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Abstract. The primary objective of this article is to derive a new free-from-second

derivative iterative method for solving nonlinear equations. The proposed method is

proven to have fifth order of convergence. Comparisons with other iterative methods rep-
resent the advantage of the modified method. Observation of applications of the method

in problems of chemical equilibrium, binary azeotropic problem, volume from van der

Waals equations, and eccentric anomaly in Kepler’s law exhibit that our method is ap-
plicable and preferable.
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1. Introduction

Finding solution of non-linear equation, f(x) = 0, has been a challenging as well

as progressing subject. Numerous equations of this kind are typical in real life

problems. Many researchers have developed methods on root-finding problems in

order to update the methods or to overcome some drawbacks that come with the

modification of the methods. Generally, subjects of improvement are how to reduce

the number of iterations needed to obtain the root and how to increase efficiency

index or the order convergence order of the method.

Halley’s method, which is defined by

xk+1 = xk −
2f(xk)f ′(xk)

2f ′(xk)2 − f(xk)f ′′(xk)
, (1.1)

has third order of convergence and requires calculation of second derivative, see

([1],[2]). It has been modified by many researchers in pursuit of finding better meth-

ods. One of the ways is by combining the method with other methods in order to

attain better results and higher order of convergence; for instance see ([3], [4], [5],

[6], [7]).

∗corresponding author

283



284 Ayunda Putri, Imran M

There is a problem in an iterative method if second derivative appears. Due to

the cost of calculating it or the problematic practicality in applying the method, free

derivative method is preferable. Many researchers have employed several techniques

in order to avoid these problems. There is a vast literature on how to avoid the

calculation of second derivative in an iterative methods as one can find in ([5], [8],

[9], [10], [11], [12], [13]).

This paper studies about adopting a technique to modify method in [14] to give

a new second derivative free iterative method. This paper is organized as follows:

The derivation of our proposed method as well as the convergence analysis of the

proposed method is carried out in Section 2. In Section 3, we test the proposed

method and other iterative methods on several transcendental functions. Finally in

Section 4, we draw the conclusion.

2. A New Free Second Derivative Iteration Method

In [8], Noor presented the method based on the method in [14] as follows:

yk = xk −
2f(xk)f ′(xk)

2f ′(xk)− f(xk)f ′′(xk)
, (2.1)

xk+1 = xk −
2[f(xk) + f(yk)]f ′(xk)

2f ′2(xk)− [f(xk) + f(yk)]f ′′(xk)
, n = 0, 1, 2, · · · . (2.2)

This method has fifth order of convergence and takes evaluation of two functions,

one first derivative and one second derivative. The efficiency index of the method

is 51/4 ≈ 1.4953.

In order to avoid calculating second derivative, we utilize a technique by [5]

where the approximation of f ′′(x) is done by making use of parabola of the form

ay2 + y + bx+ c = 0. (2.3)

Upon imposing tangency conditions y(xk) = f(xk), y′(xk) = f ′(xk) and y(wk) =

f(wk) on (2.3) where wk is defined as

wk = xk −
f(xk)

f ′(xk)
, (2.4)

then the approximation of f ′′(x) is presented as follows,

f ′′(xk) ≈ y′′(xk) =
2f(wk)f ′(xk)2(
(xk)− f(wk)

)2 . (2.5)

Substituting (2.5) to (2.1) and (2.2), we obtain a new method free of second deriva-

tive

wk = xk −
f(xk)

f ′(xk)
, (2.6)

yk = xk −
f(xk)

(
f(wk)− f(xk)

)2
f ′(xk)

(
f(wk)2 − 3f(xk)f(wk) + f(xk)2

) , (2.7)

xk+1 = xk −
(
f(xk) + f(yk)

)(
f(wk)− f(xk)

)2
f ′(xk)

(
f(wk)2 + f(xk)2 − f(wk)

(
3f(xk) + f(yk)

)) . (2.8)
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The method describes in (2.6) – (2.8) is a three-step method that requires evalua-

tions of three functions and one first derivative. We call the method as new method

free of second derivative and for simplicity will be referred to as NMFSD. The

convergence of the method is given by the following theorem.

Theorem 2.1. Let α ∈ D be a simple root of the function f : D ⊂ R −→ R, where

f(x) is sufficiently differentiable in an open interval D. If x0 be an initial guess that

properly close to α, then NMFSD has fifth order of convergence.

Proof. Let α be a simple root of f(x). Expanding f(x) around x = α using Taylor

series, one obtains

f(x) = f(α) + f ′(α)(x− α) +
1

2!
f ′′(α)(x− α)2 +

1

3!
f ′′′(x)(x− α)3 (2.9)

+
1

4!
f (4)(x)(x− α)4 +

1

5!
f (5)(x)(x− α)5 +

1

6!
f (6)(x)(x− α)6

+O(x− α)7.

Evaluating f(x) at xk and ek = xk−α be the error at the kth-iteration, one attains

f(xk) = f ′(α)
(
ek + C2e

2
k + C3e

3
k + C4e

4
k + C5e

5
k + C6e

6
k +O(e7k)

)
, (2.10)

where Cn = (1/n!)(f (n)(α)/f ′(α)), n = 1, 2, 3, · · · .
Differentiating (2.9) and evaluating the derivative at xk, resulting in

f ′(xk) = f ′(α)
(
1 + 2C2e

2
k + 3C3e

2
k + 4C4e

3
k + 5C5e

4
k + 6C6e

5
k +O(e6k)

)
. (2.11)

From (2.10) and (2.11) we have

f(xk)

f ′(xk)
= ek − C2e

2
k + (2C2

2 − 2C3)e3k + (4C3
2 + 7C2C3 − 3C4)e4k

+ (16C2
2C3 + 10C2C4 + 6C2

3 )e5k +O(e6k). (2.12)

Using (2.4), wk is obtained as

wk = ek − C2e
2
k + (2C2

2 − 2C3)e3k + (4C3
2 + 7C2C3 − 3C4)e4k + (16C2

2C3

+ 10C2C4 + 6C2
3 )e5k + (20C2

2C4 + 21C2C
3
3 + 17C3C4)e6k +O(e7k). (2.13)

Substituting wk to f(x) we have,

f(wk) = f ′(α)
(
C2e

2
k − (2C2

2 − 2C3)e3k − (4C3
2 + 7C2C3 − 3C4)e4k

− (16C2
2C3 + 10C2C4 + 6C2

3 )e5k10C2C4 + 6C2
3 )e5k

+ (20C2
2C4 + 21C2C

3
3 + 17C3C4)e6k +O(e7k)

)
. (2.14)

Using (2.10) and (2.14) and some simplification, we have

f(xk)
(
f(wk)− f(xk)

)2
= f ′(xk)3

(
e3k + C2e

4
k + (4C2

2 − C3)e5k

+ (12C3
2 + 12C2C3 − 3C4)e6k +O(e7k)

)
. (2.15)

Next, utilizing (2.10), (2.11), and (2.14) yields

f ′(xk)
(
f(wk)2 − 3f(xk)f(wk) + f(xk)2

)
= f ′(α)3

(
e2k + C2e

3
k(2C2

2 − C3)e4k + (24C3
2 + 7C2C3 − 3C4)e5k

+ (36C4
2 + 104C2

2C3 + 8C2C4 + 5C2
3 − 5C5)e6k +O(e7k)

)
. (2.16)
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Substituting (2.15) and (2.16) to (2.7) and simplifying, we have

yk = α− C2
2e

3
k − (−12C3

2 + 5C2C3)e4k − (−12C4
2 − 111C2

2C3

− 8C2C4 − 5C2
3 + 5C − 5)e5k +O(e6k). (2.17)

Employing the same technique to get f(wk), we obtain

f(yk) = f ′(α)
(
− C2

2e
3
k − (−12C3

2 + 5C2C3)e4k − (−12C4
2 − 111C2

2C3

− 8C2C4 − 5C2
3 + 5C − 5)e5k +O(e6k)

)
. (2.18)

Following on, from (2.10), (2.14), and (2.17) we have

(f(xk) + f(yk)(f(wk)− f(xk))2

= f ′(α)3
(
e3k + C2e

4
k + (3C2

2 − C3)e5k + (24C3
2 + 7C2C3 − 3C4)e6k +O(e7k)

)
,

(2.19)

and also,

f ′(xk)

(
f(wk)2 + f(xk)2 − f(wk)

(
3f(xk) + f(yk)

))
= f ′(α)3

((
e2k + C2e

3
k + (3C)22 − C3

)
e4k +

(
25C3

2 + 7C2C3 − 3C4

)
e5k

+
(
24C4

2 + 111C2
2C3 + 8C2C4 + 5C2

3 − 5C5

)
e6k +O(e7k)

)
. (2.20)

Substituting (2.19) and (2.20) into (2.8) and after some simplification we obtain

xk+1 = α− (−14C4
2 − 114C2

2C3 − 8C2C4 − 5C2
3 + 5C5)e5k − (128C5

2

+ 113C3
2C3 − C2

2C4 + 8C2C
2
3 − 5C2C5)e6k +O(e7k),

ek+1 =(14C4
2 + 114C2

2C3 + 8C2C4 + 5C2
3 − 5C5)e5k − (128C5

2

+ 113C3
2C3 − C2

2C4 + 8C2C
2
3 − 5C2C5)e6k +O(e7k).

3. Numerical Results

In this section we present some numerical results of our iterative method and its

contrasts to several other methods. The software we use for the simulations is Maple

v.2018. We additionally apply our method on some real life problems. The methods

used in the comparison are Newton’s method (NM), Halley’s method (HM), fifth-

order method composed of Newton and third-order Halley’s method (NHM) [6],

improvement of Super-Halley Method (ISHM) [9] and two step Halley’s method

(TSHM) [14]. The functions being tested are

• f1(x) = x3 − 4x2 − 10 with root α = 1.3652300134140968457608068,

• f2(x) = x2 − ex − 3x+ 2 with root α = 0.2575302854398607604553673,

• f3(x) = x3 − 10 with root α = 2.1544346900318837217592936,

• f4(x) = cos(x)− x with root α = 0.7390851332151606416553145,

• f5(x) = sin(x)2 − x2 + 1 with root α = 1.4044916482153412260350868,

• f6(x) = x2 + sin(x/5)− 1/4 with root α = 1.2634012757103932674282872,

• f7(x) = ex − 4x2 with root α = 0.7148059123627778061376222,
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• f8(x) = e−x + cos(x) with root α = 1.7461395304080124176507031.

The stopping criteria in the program are |xk+1−xk| ≤ 10−15 or |f(xk+1)| ≤ 10−15.

Table 1 displays the comparisons between the proposed method and other iter-

ative methods for functions f1(x) through f8(x). We observe number of iterations,

absolute value of function at k-th iteration and distance of each iteration for every

discussed method. It can be seen that NMFSD needs fewer or equal number of itera-

tions compared to the competitor methods. In addition, the discussed method gives

a more precise solution. For instance, in the case where the number of iterations are

the same, our proposed method gives a better precision than other methods where

it can be seen from the values of |f(x)| of NMFSD that are relatively smaller for

all cases except in f1(x). In this case, NMFSD produces the smallest number of

iterations among others. Furthermore, although ISHM and TSHM are of the same

order of convergence with NMFSD, the numerical results are not overall accurate

as NMFSD and same goes with the rest of the compared methods with lower order

of convergence.

Table 1. Comparison of discussed iterative methods for functions f1(x) through f8(x)

function Methods k xk |f(xk)| |xk+1 − xk|

f1(x)

NM 54 1.3652300134140968457608068 8.1e− 30 1.0e− 15

x0 = −0.3

HM 58 1.3652300134140968457608069 6.8e− 25 6.1e− 09
NHM 56 1.3652300134140968457608068 5.3e− 26 1.0e− 07
ISHM 27 1.3652300134140968457608068 8.4e− 48 6.6e− 16
TSHM 19 1.3652300134140968457607650 6.9e− 22 5.3e− 05
NMFSD 4 1.3652300134140968457591418 2.8e− 20 1.2e− 04

f2(x)

NM 4 0.2575302854398607604553673 1.1e− 26 1.8e− 13

x0 = 0.5

HM 3 0.2575302854398607604553673 1.4e− 32 4.2e− 11
NHM 2 0.2575302854398608296848409 2.6e− 16 1.9e− 04
ISHM 2 0.2575302854398609247347169 6.2e− 16 4.9e− 05
TSHM 2 0.2575302854398607604553673 4.5e− 27 1.1e− 05
NMFSD 2 0.2575302854398607604553673 4.7e− 37 1.9e− 07

f3(x)

NM 5 2.1544346900318837218052378 6.4e− 19 3.2e− 10

x0 = 1.7

HM 3 2.1544346900318837216602636 1.4e− 18 8.8e− 07
NHM 3 2.1544346900318837217592937 2.4e− 24 3.1e− 07
ISHM 3 2.1544346900318837217592936 4.1e− 28 2.3e− 09
TSHM 3 2.1544346900318837216602636 1.4e− 18 8.8e− 07
NMFSD 3 2.1544346900318837217592936 5.1e− 64 2.3e− 13
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function Methods k xk |f(xk)| |xk+1 − xk|

f4(x)

NM 4 0.7390851332151606416617026 1.1e− 20 1.7e− 10

x0 = 1.0

HM 3 0.7390851332151606416553121 5.6e− 29 6.6e− 10
NHM 3 0.7390851332151606416553121 3.6e− 57 1.0e− 14
ISHM 3 0.7390851332151606416553121 1.9e− 41 1.1e− 13
TSHM 2 0.7390851332151606416553145 4.1e− 24 3.6e− 05
NMFSD 2 0.7390851332151606416553121 2.4e− 32 1.7e− 06

f5(x)

NM 6 1.4044916482153412260354817 9.8e− 22 2.5e− 11

x0 = 3.5

HM 4 1.4044916482153412260351022 3.8e− 23 3.1e− 08
NHM 4 1.4044916482153412260350868 4.8e− 35 1.4e− 09
ISHM 3 1.4044916482153412261236135 2.2e− 19 1.5e− 06
TSHM 3 1.4044916482153412260350868 2.1e− 26 6.3e− 06
NMFSD 3 1.4044916482153412260350868 1.8e− 36 7.0e− 08

f6(x)

NM 3 1.2634012757103931737831137 1.8e− 17 6.0e− 08

x0 = 1.0

HM 3 1.2634012757103932674282872 6.1e− 45 1.6e− 14
NHM 2 1.2634012757103932674282872 8.3e− 28 1.8e− 06
ISHM 2 1.2634012757103932649724849 4.8e− 19 1.4e− 05
TSHM 2 1.2634012757103932674282872 8.4e− 39 1.9e− 07
NMFSD 2 1.2634012757103932674282872 4.5e− 49 3.6e− 09

f7(x)

NM 5 0.7148059123627778061382883 2.5e− 21 2.9e− 11

x0 = 0.5

HM 3 0.7148059123627777997252275 2.4e− 17 2.0e− 06
NHM 4 0.7148059123627778061376222 1.5e− 47 7.5e− 13
ISHM 3 0.7148059123627778061376222 3.9e− 35 8.0e− 12
TSHM 3 0.7148059123627778061376222 6.3e− 63 2.5e− 13
NMFSD 3 0.7148059123627778061376222 3.3e− 70 1.2e− 14

f8(x)

NM 5 1.7461395304080124176507030 6.7e− 26 6.2e− 13

x0 = 2.4

HM 4 1.7461395304080124176507031 4.8e− 42 3.2e− 14
NHM 3 1.7461395304080121277471630 3.4e− 16 2.2e− 04
ISHM 3 1.7461395304080124176506969 7.2e− 24 7.4e− 08
TSHM 3 1.7461395304080124176507031 1.7e− 48 4.8e− 10
NMFSD 3 1.7461395304080124176507031 2.4e− 74 6.2e− 15

Next, we investigate the proposed method by applying it to chemical engineering

problems and physics and do some comparison with methods used in the preceding

numerical simulations. The stopping criteria and tolerance used are the same with

the previous simulation done above.

Example 3.1. Consider a chemical equilibrium problem showed in [16],

g1(x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 1.674, (3.1)

which represents a conversion of ammonia from the fraction of nitrogen-hydrogen

feed (also known as fractional conversion) at 250 atm pressure and temperature of

500◦C. The roots of (3.1) are x1 = 0.278, x2 = −0.384, x4 = 3.949 + 0.316i and

x4 = 3.949− 0.316i. Fractional conversion is a number between 0 and 1. Hence, the

only solution that is physically meaningful is x1. For the numerical simulation, we

use initial guess x0 = 0.5.
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Example 3.2. Consider the problem from [17] to find the azeotropic point of a

binary solution:

g2(x) =
AB
(
B(1− x2)−Ax2

)(
x(A−B) +B2

) + 0.14845 (3.2)

where A andB are coefficients in the van Laar equation that describe phase equlibria

of liquid solutions, see [18] and the reference therein. Let A = 0.38969 and B =

0.55954, then the root of (3.2) is x = 0.6914737357. We apply initial guess x0 = 1.0

in the simulation.

Example 3.3. Kepler’s law of planetary motion states that a planet revolves

around the sun in an elliptic orbit. Position of a planet, (α, β), at time t can be

determined by solving

α = a cos(E − e),

β = a
√

1− e2 sin(E),

where E and e are the eccentric anomaly and the eccentricity of the ellipse respec-

tively and 0 < e < 1, see [19] and the reference therein. In order to find (α, β), one

must solve the following formula:

g3(E) = e sin(E)− E +M,

where M is the mean anomaly. The arising problem is to find the root of

g3(x) = M − x+ e sin(x) = 0. (3.3)

The root of (3.3) is 0.5236038. Consider M =
π

6
and use initial guess x0 = M .

Example 3.4. Van der Waals’ equation for n moles of gas is given by:(
P +

n2a

V 2

)
(V − nb) = nRT, (3.4)

where R = 0.0820578 is gas constant and n is number of moles of gas, P is pressure,

V is volume and T is temperature, see [20]. In addition, a and b are constants which

are obtained experimentally for each gas.

Formula (3.4) is reduced in order to find the volume of a certain gas:

g4(V ) = pV 3 − n(RT + bp)V 2 + n2aV − n3ab.

Volume of 1.00 moles of neon at temperature of 355K under pressure of 500 atm,

given that van der Waals constants for neon are a = 0.2135 and b = 0.01709, can

be found by finding the roots of following equation

g4(x) = 500x3 − 37.4905190x2 + 0.208x− 0.00347776. (3.5)

The roots of (3.5) are x1 = 0.0022882 − 0.0098929i, x2 = 0.0022882 + 0.0098929i

and x3 = 0.070776. Since the goal is to find volume, we only consider the third root

x3. The test is done by considering x0 = 2.0.

Table 2 illustrates the comparisons between the studied iterative methods with

other methods to solve Example 3.1 through Example 3.4, where k denotes the
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Table 2. Comparison of discussed iterative methods for functions g1(x) through g4(x)

g1(x)

Methods k xk |g(xk)| |xk+1 − xk|

x0 = 0.5

NM 5 0.2777594235836338613571836 4.7e− 26 7.4e− 14
HM 3 0.2777594235836338626272471 1.1e− 17 9.1e− 07
NHM 4 0.2777594235836338613571836 1.3e− 57 1.4e− 15
ISHM 3 0.2777594235836338613571836 1.1e− 29 2.5e− 10
TSHM 3 0.2777594235836338613571836 1.8e− 70 4.7e− 15
NMFSD 2 0.2777594235836338613570451 1.2e− 21 5.9e− 05

g2(x)

NM 5 0.6914737357471414206321227 9.4e− 25 1.2e− 12

x0 = 1.0

HM 3 0.6914737357471414206321218 2.2e− 32 8.1e− 11
NHM 2 0.6914737357471411393975076 3.1e− 16 1.9e− 04
ISHM 3 0.6914737357471414206321013 2.3e− 23 5.1e− 08
TSHM 2 0.6914737357471414206321218 2.6e− 27 1.4e− 05
NMFSD 2 0.6914737357471414351059217 1.6e− 17 5.9e− 04

g3(x)

NM 1 0.5236037756416005182695768 6.3e− 17 5.0e− 06

x0 = π
6

HM 1 0.5236037756416004557679530 1.8e− 22 5.0e− 06
NHM 1 0.5236037756416004557677725 1.3e− 32 5.0e− 06
ISHM 1 0.5236037756416004557677725 4.5e− 28 5.0e− 06
TSHM 1 0.5236037756416004557677725 2.0e− 38 5.0e− 06
NMFSD 1 0.5236037756416004557677725 2.8e− 44 5.0e− 06

g4(x)

NM 14 0.0704788277033310934161193 3.6e− 17 7.3e− 10

x0 = 2.0

HM 9 0.0704788277033310780934677 1.7e− 33 1.1e− 12
NHM 10 0.0704788277033310780934677 2.0e− 34 1.9e− 10
ISHM 6 0.0704788277033310780934677 1.8e− 35 1.4e− 13
TSHM 7 0.0704788277033310780934677 9.1e− 59 1.3e− 13
NMFSD 4 0.0704788277033310780958190 5.4e− 21 4.9e− 06

number of iterations needed to satisfy the stopping criteria, xk is the approximate

root at iteration k, |g(xk)| is the value of approximate root at iteration k, and

|xk+1 − xk| is the distance between two successive iterations. From the simulation,

it can be concluded that NMFSD has better approximation to the solution of each

example. It is shown in the table that NMFSD needs fewer or equal number of

iterations for g1(x), g2(x) and g4(x). Finally, In the case of g3(x), although all of

discussed methods need one iteration to approximate the solution, NMFSD does

better in approximating by providing a more accurate solution where its |g(xk)|
being the smallest among all.

4. Conclusion

In this study, we have derived a new iterative method free from second derivative.

We have approximated the second derivative by applying a parabola equation and

imposing the tangency conditions, obtaining a new iterative method of fifth order

of convergence. Order of convergence of the method has been proven. Numerical

simulations and comparisons have been carried out for five other iterative methods,

two of which are of the same order with the discussed method. Four real life problems

from chemical engineering and physics have been borrowed to test the method
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and its competitors. Overall, the proposed method shows more accurate solutions

compare to the other methods.
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