Jurnal Matematika UNAND

Vol. 12 No. 4 Hal. 283 — 292

ISSN : 2303-291X

e-ISSN : 2721-9410

©Departemen Matematika dan Sains Data FMIPA UNAND

A NEW SECOND DERIVATIVE FREE ITERATIVE
METHOD OF FIFTH ORDER OF CONVERGENCE AND
ITS APPLICATIONS

AYUNDA PUTRI, M. IMRAN*

Department of Mathematics,
Faculty of Mathematics and Natural Sciences, University of Riau
email : ayundaputri@Qunri.ac.id, mimran@unri.ac.id

Accepted March 20, 2023  Revised May 5, 2023, Published October 21, 2023

Abstract. The primary objective of this article is to derive a new free-from-second
derivative iterative method for solving monlinear equations. The proposed method is
proven to have fifth order of convergence. Comparisons with other iterative methods rep-
resent the advantage of the modified method. Observation of applications of the method
in problems of chemical equilibrium, binary azeotropic problem, volume from van der
Waals equations, and eccentric anomaly in Kepler’s law exhibit that our method is ap-
plicable and preferable.
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1. Introduction

Finding solution of non-linear equation, f(z) = 0, has been a challenging as well
as progressing subject. Numerous equations of this kind are typical in real life
problems. Many researchers have developed methods on root-finding problems in
order to update the methods or to overcome some drawbacks that come with the
modification of the methods. Generally, subjects of improvement are how to reduce
the number of iterations needed to obtain the root and how to increase efficiency
index or the order convergence order of the method.
Halley’s method, which is defined by

oy 2f(xr) f' (w)
P = ST — ) ) -y

has third order of convergence and requires calculation of second derivative, see
([1],[2])- It has been modified by many researchers in pursuit of finding better meth-
ods. One of the ways is by combining the method with other methods in order to
attain better results and higher order of convergence; for instance see ([3], [4], [5],

(6], [7])-
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There is a problem in an iterative method if second derivative appears. Due to
the cost of calculating it or the problematic practicality in applying the method, free
derivative method is preferable. Many researchers have employed several techniques
in order to avoid these problems. There is a vast literature on how to avoid the
calculation of second derivative in an iterative methods as one can find in ([5], [8],
9], [10], [11], [12], [13)).

This paper studies about adopting a technique to modify method in [14] to give
a new second derivative free iterative method. This paper is organized as follows:
The derivation of our proposed method as well as the convergence analysis of the
proposed method is carried out in Section 2. In Section 3, we test the proposed
method and other iterative methods on several transcendental functions. Finally in
Section 4, we draw the conclusion.

2. A New Free Second Derivative Iteration Method
In [8], Noor presented the method based on the method in [14] as follows:

2@l
Uk =TT D ) — Flaw) P an) @1)
T 2[f (xr) + fyn)|f' (z1) 01,2, (2.2)

21 () = [f (zx) + f(ye)lf" (2r)”
This method has fifth order of convergence and takes evaluation of two functions,
one first derivative and one second derivative. The efficiency index of the method
is 51/4 ~ 1.4953.
In order to avoid calculating second derivative, we utilize a technique by [5]
where the approximation of f”(z) is done by making use of parabola of the form

ay’ +y+bxr+c=0. (2.3)

Upon imposing tangency conditions y(xx) = f(zk), v (xx) = f/(xx) and y(wg) =
f(wg) on (2.3) where wy, is defined as

f(zr)
=2, — 2.4
Wk T fl(-rk) ) ( )
then the approximation of f”(z) is presented as follows,
2 / 2
P an) ~ " (ag) = 2Ll (@) (2.5)

—
((z) = f(wk))
Substituting (2.5) to (2.1) and (2.2), we obtain a new method free of second deriva-
tive

f(xx)

Wi =Tk S (2.6)
o Flan) (flwr) — fla)
U= ) (Fwn)? — 3f (o) fwn) + F@n)?) @7)
o (f(ar) + F) (f (wr) = f(zx))®
Thi1 = Tk (2.8)

Fr(a) (f(wm TP ) — flwe) (3 (an) + f<yk>)) |
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The method describes in (2.6) — (2.8) is a three-step method that requires evalua-
tions of three functions and one first derivative. We call the method as new method
free of second derivative and for simplicity will be referred to as NMFSD. The
convergence of the method is given by the following theorem.

Theorem 2.1. Let o € D be a simple root of the function f: D C R — R, where
f(x) is sufficiently differentiable in an open interval D. If z¢ be an initial guess that
properly close to o, then NMFSD has fifth order of convergence.

Proof. Let a be a simple root of f(z). Expanding f(z) around 2 = « using Taylor
series, one obtains

F(#) = (@) + f/(@)(z — 0) + g /(@) — af + 5 f () —a)  (29)

1 1 1
+ @@ - ) + 5O - ) + O - a)f
+O0(z —a)".
Evaluating f(x) at zj and ex, = x — a be the error at the kth-iteration, one attains
flzr) = f(a) (ek + Cgei + Cgei + C’4ei + Csel + C’geg + O(@Z)), (2.10)
where C,, = (1/n))(f™(a)/f'(a)),n =1,2,3,---.
Differentiating (2.9) and evaluating the derivative at xj, resulting in
f’(xk) = f/(Oé) (1 + 2026% + 30362 + 4046% + 5056% + GC’Gei + 0(62)) (2.11)
From (2.10) and (2.11) we have

f(zk)
f'(wk)

= e}, — Cyer + (203 — 203)e3 + (405 + 7C2C5 — 3Cy)es

+ (16C3C5 + 10C2Cy + 6C3 el 4+ O(el). (2.12)
Using (2.4), wy, is obtained as
wy, = ex, — Caes + (202 — 2C3)e} 4 (4C3 + 7C,C3 — 3Cy et + (16C3C3
+ 10C5Cy + 6032)e} + (20050, + 21C2C3 +17C3Cy)el + O(el). (2.13)
Substituting wy to f(x) we have,
flwy) = f'(a)(Caef — (2C3 — 2C5)e} — (4C5 + TC2C3 — 3Cy)e
— (16C2C3 + 10C2Cy + 6C2)e3100,Cy + 607 )el
+ (20C5Cy + 21C5C5 + 17C3Cy)el + O(ey)). (2.14)
Using (2.10) and (2.14) and some simplification, we have
F@n)(f(wr) = f@n)” = F(ar) (e} + Cacl + (4C3 — Cy)ef
+ (1205 + 12C5C5 — 3Cy)el + Ofep)).  (2.15)
Next, utilizing (2.10), (2.11), and (2.14) yields
() (f (wi)? = 3f (xx) f (wi) + f(1)?)
= f'(a)®(ef + C2e} (2C5 — C3)ep, + (24C3 + TC2C5 — 3Cy)ej,
+ (36C3 + 104C5C5 + 8C2Cy + 5C5 — 5Cs)ep + Ofef)).  (2.16)
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Substituting (2.15) and (2.16) to (2.7) and simplifying, we have
yr = a — Ciel — (—120% 4+ 5C2C3)ef — (—12C5 — 111C3C3

— 8030y — 5C35 4+ 5C — 5)ef + O(el). (2.17)

Employing the same technique to get f(wy), we obtain
flyr) = f'(@)( = C3ei — (—12C3 +5C2C3)e, — (—12C; — 111C3Cs
—8C2Cy — 5C3 + 5C — 5)ej, + O(e})). (2.18)

Following on, from (2.10), (2.14), and (2.17) we have
(f (xn) + f () (f (wr) = f(z0))?

= f'(@)®(e} + Caepy + (3C5 — Cs)ej, + (24C3 + TC>C5 — 3Cy)el + O(ef)),
(2.19)

and also,
F(a) (f<wk>2 T Fa)? — Flwg) (3F () + f(m)))
= f/(a>3 ((6% + 0262 + (30)22 - Cg)ei + (2503 + 70203 - 304)62

+ (24C3 4 111C3C5 + 8C>Cy + 5C3 — 5C5) e + O(e;)). (2.20)

Substituting (2.19) and (2.20) into (2.8) and after some simplification we obtain
Tpi1 = a — (—14C3 — 114C2C5 — 8CoCy — 5C3 + 5C5)el — (128C5
+113C3C3 — C3Cy + 8C2C5 — 5C5C5)els + O(el),
ers1 =(14C3 + 114C2C5 4 8CoCy + 5C% — 5C5)es — (128C5
+ 113C5C5 — C2Cy + 8C5C2 — 5C5C5)ef + O(el). i

3. Numerical Results

In this section we present some numerical results of our iterative method and its
contrasts to several other methods. The software we use for the simulations is Maple
v.2018. We additionally apply our method on some real life problems. The methods
used in the comparison are Newton’s method (NM), Halley’s method (HM), fifth-
order method composed of Newton and third-order Halley’s method (NHM) [6],
improvement of Super-Halley Method (ISHM) [9] and two step Halley’s method
(TSHM) [14]. The functions being tested are
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o fa(z) = e~ + cos(z) with root @ = 1.7461395304080124176507031.

The stopping criteria in the program are |zg1 —zx| < 1071 or |f(zg41)] < 10715,

Table 1 displays the comparisons between the proposed method and other iter-
ative methods for functions fi(x) through fs(z). We observe number of iterations,
absolute value of function at k-th iteration and distance of each iteration for every
discussed method. It can be seen that NMFSD needs fewer or equal number of itera-
tions compared to the competitor methods. In addition, the discussed method gives
a more precise solution. For instance, in the case where the number of iterations are
the same, our proposed method gives a better precision than other methods where
it can be seen from the values of |f(x)| of NMFSD that are relatively smaller for
all cases except in fi(z). In this case, NMFSD produces the smallest number of
iterations among others. Furthermore, although ISHM and TSHM are of the same
order of convergence with NMFSD, the numerical results are not overall accurate
as NMFSD and same goes with the rest of the compared methods with lower order
of convergence.

Table 1. Comparison of discussed iterative methods for functions fi(z) through fs(x)

function | Methods | k Tk |f(xx)] |Tg4+1 — Tk
NM 54 | 1.3652300134140968457608068 | 8.1e — 30 1.0e — 15
HM 58 | 1.3652300134140968457608069 | 6.8e — 25 6.1e — 09
fi(x) NHM 56 | 1.3652300134140968457608068 | 5.3e — 26 1.0e — 07
zo = —0.3 ISHM 27 | 1.3652300134140968457608068 | 8.4e — 48 6.6e — 16
TSHM 19 | 1.3652300134140968457607650 | 6.9e — 22 5.3e — 05
NMFSD 4 | 1.3652300134140968457591418 | 2.8e — 20 1.2e — 04
NM 4 | 0.2575302854398607604553673 | 1.le — 26 1.8e —13
HM 3 | 0.2575302854398607604553673 | 1.4e — 32 4.2e — 11
fa(x) NHM 2 | 0.2575302854398608296848409 | 2.6e — 16 1.9e — 04
zo = 0.5 ISHM 2 | 0.2575302854398609247347169 | 6.2e — 16 4.9e — 05
TSHM 2 | 0.2575302854398607604553673 | 4.5e — 27 1.1e — 05
NMFSD | 2 | 0.2575302854398607604553673 | 4.7e — 37 1.9e — 07
NM 5 | 2.1544346900318837218052378 | 6.4e — 19 3.2e — 10
HM 3 | 2.1544346900318837216602636 | 1.4e — 18 8.8e — 07
f3(x) NHM 3 | 2.1544346900318837217592937 | 2.4e — 24 3.1le — 07
o =17 ISHM 3 | 2.1544346900318837217592936 | 4.1e — 28 2.3e — 09
TSHM 3 | 2.1544346900318837216602636 | 1.4e — 18 8.8e — 07
NMFSD | 3 | 2.1544346900318837217592936 | 5.1e — 64 2.3e — 13
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function | Methods | k T |f(z)] |zpr1 — Tk
NM 4 1 0.7390851332151606416617026 | 1.1e — 20 1.7¢e — 10
HM 3 | 0.7390851332151606416553121 | 5.6e — 29 6.6e — 10
fa(x) NHM 3 | 0.7390851332151606416553121 | 3.6e — 57 1.0e — 14
zg = 1.0 ISHM 3 | 0.7390851332151606416553121 | 1.9e — 41 l.1le — 13
TSHM 2 | 0.7390851332151606416553145 | 4.1e — 24 3.6e — 05
NMFSD | 2 | 0.7390851332151606416553121 | 2.4e — 32 1.7e — 06
NM 6 | 1.4044916482153412260354817 | 9.8 — 22 2.5e —11
HM 4 | 1.4044916482153412260351022 | 3.8e — 23 3.1e — 08
f5(x) NHM 4 | 1.4044916482153412260350868 | 4.8e — 35 1.4e — 09
g = 3.5 ISHM 3 | 1.4044916482153412261236135 | 2.2e — 19 1.5e — 06
TSHM 3 | 1.4044916482153412260350868 | 2.1e — 26 6.3e — 06
NMFSD | 3 | 1.4044916482153412260350868 | 1.8e — 36 7.0e — 08
NM 3 | 1.2634012757103931737831137 | 1.8e — 17 6.0e — 08
HM 3 | 1.2634012757103932674282872 | 6.1e — 45 1.6e — 14
fe(z) NHM 2 | 1.2634012757103932674282872 | 8.3e — 28 1.8e — 06
zg = 1.0 ISHM 2 | 1.2634012757103932649724849 | 4.8¢ — 19 1.4e — 05
TSHM 2 | 1.2634012757103932674282872 | 8.4e — 39 1.9e — 07
NMFSD | 2 | 1.2634012757103932674282872 | 4.5¢ — 49 3.6e — 09
NM 5 | 0.7148059123627778061382883 | 2.5e — 21 2.9e — 11
HM 3 | 0.7148059123627777997252275 | 2.4e — 17 2.0e — 06
f7(x) NHM 4 | 0.7148059123627778061376222 | 1.5e — 47 7.5e — 13
zo = 0.5 ISHM 3 | 0.7148059123627778061376222 | 3.9e — 35 8.0e — 12
TSHM 3 | 0.7148059123627778061376222 | 6.3¢ — 63 2.5e — 13
NMFSD | 3 | 0.7148059123627778061376222 | 3.3e — 70 1.2e — 14
NM 5 | 1.7461395304080124176507030 | 6.7¢ — 26 6.2¢ — 13
HM 4 | 1.7461395304080124176507031 | 4.8e — 42 3.2e — 14
fs(x) NHM 3 | 1.7461395304080121277471630 | 3.4e — 16 2.2e — 04
Tg = 2.4 ISHM 3 | 1.7461395304080124176506969 | 7.2¢ — 24 7.4e — 08
TSHM 3 | 1.7461395304080124176507031 | 1.7e — 48 4.8¢ — 10
NMFSD | 3 | 1.7461395304080124176507031 | 2.4e — 74 6.2e — 15

Next, we investigate the proposed method by applying it to chemical engineering
problems and physics and do some comparison with methods used in the preceding
numerical simulations. The stopping criteria and tolerance used are the same with
the previous simulation done above.

Example 3.1. Consider a chemical equilibrium problem showed in [16],
g1(z) = x* — 7.790752> + 14.74452% + 2.5112 — 1.674, (3.1)

which represents a conversion of ammonia from the fraction of nitrogen-hydrogen
feed (also known as fractional conversion) at 250 atm pressure and temperature of
500°C'. The roots of (3.1) are x; = 0.278, 25 = —0.384, x4 = 3.949 + 0.316¢ and
x4 = 3.949 — 0.316¢. Fractional conversion is a number between 0 and 1. Hence, the
only solution that is physically meaningful is ;. For the numerical simulation, we
use initial guess xg = 0.5.
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Example 3.2. Consider the problem from [17] to find the azeotropic point of a
binary solution:

() AB(B(1 — 2?) — Ax?)
xTr) =

- (@(A—B) + B?)

where A and B are coefficients in the van Laar equation that describe phase equlibria
of liquid solutions, see [18] and the reference therein. Let A = 0.38969 and B =
0.55954, then the root of (3.2) is z = 0.6914737357. We apply initial guess o = 1.0

in the simulation.

+0.14845 (3.2)

Example 3.3. Kepler’s law of planetary motion states that a planet revolves
around the sun in an elliptic orbit. Position of a planet, (o, ), at time ¢ can be
determined by solving

a=acos(E —e),
B =av1-—eZsin(E),

where FE and e are the eccentric anomaly and the eccentricity of the ellipse respec-
tively and 0 < e < 1, see [19] and the reference therein. In order to find («, 3), one
must solve the following formula:

93(E) = esin(E) — E + M,
where M is the mean anomaly. The arising problem is to find the root of
g3(x) = M — x + esin(z) = 0. (3.3)
The root of (3.3) is 0.5236038. Consider M = % and use initial guess ¢ = M.

Example 3.4. Van der Waals’ equation for n moles of gas is given by:

V2
where R = 0.0820578 is gas constant and n is number of moles of gas, P is pressure,
V is volume and T is temperature, see [20]. In addition, a and b are constants which
are obtained experimentally for each gas.

Formula (3.4) is reduced in order to find the volume of a certain gas:

92(V) = pV?® — n(RT + bp)V? + n?aV — n3ab.

<P + ”za> (V — nb) = nRT, (3.4)

Volume of 1.00 moles of neon at temperature of 355K under pressure of 500 atm,
given that van der Waals constants for neon are a = 0.2135 and b = 0.01709, can
be found by finding the roots of following equation

ga(w) = 5002 — 37.490519022 + 0.208x — 0.00347776. (3.5)

The roots of (3.5) are x; = 0.0022882 — 0.0098929i, z» = 0.0022882 + 0.0098929:
and x3 = 0.070776. Since the goal is to find volume, we only consider the third root
x3. The test is done by considering xzg = 2.0.

Table 2 illustrates the comparisons between the studied iterative methods with
other methods to solve Example 3.1 through Example 3.4, where k denotes the



290 Ayunda Putri, Imran M

Table 2. Comparison of discussed iterative methods for functions g1 (z) through ga(x)

Methods | & Ty, lg(zk)| | |zrt1 — zk]
NM 5 | 0.2777594235836338613571836 | 4.7e¢ — 26 T.4e — 14
HM 3 0.2777594235836338626272471 | 1.1e — 17 9.1e — 07
g1(x) NHM 4 | 0.2777594235836338613571836 | 1.3e — 57 1l.4e — 15
xg = 0.5 ISHM 3 | 0.2777594235836338613571836 | 1.1e — 29 2.5e — 10
TSHM 3 0.2777594235836338613571836 | 1.8e — 70 4.7e — 15
NMFSD 2 | 0.2777594235836338613570451 | 1.2¢ — 21 5.9¢ — 05
NM 5 0.6914737357471414206321227 | 9.4e — 25 1.2e — 12
HM 3 0.6914737357471414206321218 | 2.2¢ — 32 8.1le — 11
g2(x) NHM 2 | 0.6914737357471411393975076 | 3.1le — 16 1.9¢ — 04
xzg = 1.0 ISHM 3 0.6914737357471414206321013 | 2.3e — 23 5.1e — 08
TSHM 2 0.6914737357471414206321218 | 2.6e — 27 1.4e — 05
NMFSD 2 0.6914737357471414351059217 | 1.6e — 17 5.9e — 04
NM 1 0.5236037756416005182695768 | 6.3¢ — 17 5.0e — 06
HM 1 0.5236037756416004557679530 | 1.8e — 22 5.0e — 06
g3 (x) NHM 1 0.5236037756416004557677725 | 1.3e — 32 5.0e — 06
Ty = % ISHM 1 0.5236037756416004557677725 | 4.5e¢ — 28 5.0e — 06
TSHM 1 0.5236037756416004557677725 | 2.0e — 38 5.0e — 06
NMFSD 1 0.5236037756416004557677725 | 2.8 — 44 5.0e — 06
NM 14 | 0.0704788277033310934161193 | 3.6e — 17 7.3e — 10
HM 9 | 0.0704788277033310780934677 | 1.7¢ — 33 1.1e — 12
ga(x) NHM 10 | 0.0704788277033310780934677 | 2.0e — 34 1.9¢ — 10
xg = 2.0 ISHM 6 | 0.0704788277033310780934677 | 1.8e — 35 1.4e — 13
TSHM 7 | 0.0704788277033310780934677 | 9.1e — 59 1.3e — 13
NMFSD 4 | 0.0704788277033310780958190 | 5.4e — 21 4.9¢ — 06

number of iterations needed to satisfy the stopping criteria, xj is the approximate
root at iteration k, |g(zx)| is the value of approximate root at iteration k, and
|zk4+1 — xk| is the distance between two successive iterations. From the simulation,
it can be concluded that NMFSD has better approximation to the solution of each
example. It is shown in the table that NMFSD needs fewer or equal number of
iterations for gi(x),g2(x) and g4(x). Finally, In the case of gs(z), although all of
discussed methods need one iteration to approximate the solution, NMFSD does
better in approximating by providing a more accurate solution where its |g(z)|
being the smallest among all.

4. Conclusion

In this study, we have derived a new iterative method free from second derivative.
We have approximated the second derivative by applying a parabola equation and
imposing the tangency conditions, obtaining a new iterative method of fifth order
of convergence. Order of convergence of the method has been proven. Numerical
simulations and comparisons have been carried out for five other iterative methods,
two of which are of the same order with the discussed method. Four real life problems
from chemical engineering and physics have been borrowed to test the method
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and its competitors. Overall, the proposed method shows more accurate solutions
compare to the other methods.
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