Jurnal Matematika UNAND Vol. $\bf 5$ No. $\bf 4$ Hal. 45-53

ISSN: 2303-291X

©Jurusan Matematika FMIPA UNAND

BATAS ATAS RAINBOW CONNECTION NUMBER PADA GRAF DENGAN KONEKTIVITAS 3

PRIMA RESA PUTRI

 $Program\ Studi\ Magister\ Matematika,$ $Fakultas\ Matematika\ dan\ Ilmu\ Pengetahuan\ Alam,\ Universitas\ Andalas,$ $Kampus\ UNAND\ Limau\ Manis\ Padang,\ Indonesia,$ $email\ :\ primaresaputri@gmail.co.id$

Abstrak. Suatu graf G dikatakan bersifat rainbow connected apabila setiap dua titik di G dihubungkan oleh suatu lintasan (path) yang setiap sisinya memiliki warna yang berbeda. Rainbow Connection Number dari suatu graf G, dinotasikan rc(G), adalah jumlah terkecil pewarnaan yang diperlukan untuk membuat G bersifat rainbow connected. Pada makalah ini akan dikaji kembali tentang batas atas bilangan rainbow connection untuk graf dengan konektifitas 3, seperti yang telah dibahas dalam [7].

Kata Kunci: Rainbow connection number, konektifitas

1. Pendahuluan

Teori graf muncul pada tahun 1736 ketika Euler mengemukakan masalah Jembatan Konigsberg. Pada awalnya graf diterapkan dalam penyelesaian masalah rute terpendek, namun seiring perkembangan zaman dan kemajuan teknologi, aplikasi teori graf telah merambah ke aneka disiplin ilmu dan membantu memudahkan orang untuk menyelesaikan beberapa permasalahan. Penggunaan graf ditekankan untuk memodelkan persoalan. Teori graf juga sangat berguna untuk mengembangkan modelmodel yang terstruktur dalam berbagai situasi.

Salah satu teori yang berkembang pesat dalam kajian teori graf adalah konsep rainbow connection. Konsep rainbow connection pada awalnya diperkenalkan oleh Chartrand pada tahun 2006 [2]. Suatu lintasan dikatakan rainbow path jika tidak ada dua sisi dalam lintasan terebut yang memiliki warna sama. Graf G dikatakan rainbow connected jika setiap dua titik yang berbeda dihubungkan oleh rainbow path. Dalam hal ini, pewarnaan graf G disebut rainbow coloring. Jika ada sebanyak k warna yang digunakan, maka pewarnaannya disebut rainbow k-coloring. Minimum dari banyak warna yang dibutuhkan sedemikian sehingga suatu graf menjadi rainbow connected disebut dengan rainbow connection number, dinotasikan rc(G). Jika untuk setiap dua titik u dan v di G, panjang rainbow path pada graf G sama dengan d(u,v), yaitu jarak antara kedua titik tersebut, maka graf G dikatakan strong rainbow connected. Dalam hal ini, pewarnaan graf G disebut strong rainbow coloring, dan rainbow path dikatakan geodesic. Jika ada sebanyak k warna yang digunakan, maka pewarnaannya disebut strong rainbow k-coloring. Minimum dari banyak warna yang dibutuhkan sedemikian sehingga suatu graf menjadi strong rainbow connected disebut dengan strong rainbow connection number, dinotasikan src(G).

Dapat dilihat bahwa untuk suatu graf terhubung tak trivial G dengan banyak sisi m, berlaku

$$diam(G) < rc(G) < src(G) < m. \tag{1.1}$$

Dalam kajian ini akan dibahas tentang batas atas pada graf terhubung sederhana yang tak trivial dengan 3-vertex connected, seperti yang telah dibahas dalam [7].

2. Beberapa Konsep dalam Rainbow Connection

Berikut disajikan kembali proposisi yang membahas tentang graf G dengan ukuran m yang mempunyai nilai rc(G) dan src(G) 1, 2 dan m.

Proposisi 2.1. [3] Misalkan G suatu graf terhubung tak trivial berukuran m. Maka berlaku

- (1) rc(G) = src(G) = 1 jika dan hanya jika G suatu graf lengkap,
- (2) rc(G) = 2 jika dan hanya jika src(G) = 2,
- (3) rc(G) = src(G) = m jika dan hanya jika G suatu graf pohon.

Bukti.

- (1) Jika pada graf lengkap G diberikan 1 warna untuk tiap sisi-sisinya, maka untuk setiap dua titik u dan v di G terdapat rainbow 1-coloring yang juga merupakan u-v geodesic. Jadi G merupakan rainbow 1-coloring dan strong rainbow 1-coloring sehingga rc(G) = src(G) = 1. Jika rc(G) = src(G) = 1 tidak ada dua titik yang tidak bertetangga maka haruslah G merupakan graf lengkap.
- (2) Jika rc(G) = 2, ini berarti G memiliki suatu rainbow 2-coloring yang mengakibatkan setiap dua titik yang tidak bertetangga dihubungkan oleh suatu rainbow path dengan panjang 2, maka haruslah $src(G) \geq 2$. Karena lintasan tersebut merupakan geodesic, jadi tidak mungkin src(G) > 2 maka src(G) = 2. Sebaliknya, asumsikan src(G) = 2. berdasarkan (1) haruslah $rc(G) \leq 2$. karena G bukan merupakan graf lengkap, sehingga rc(G) = 2.
- (3) Andaikan G bukan graf pohon. Maka G memiliki suatu lingkaran C: $v_1, v_2, \cdots, v_k, v_1$ dimana $k \geq 3$. Maka (m-1)-coloring terhadap sisi-sisi G yang memberikan 1 untuk sisi v_1v_2 dan v_2v_3 , dan memberikan (m-2) buah warna berbeda dari himpunan warna $\{2, 3, \cdots, m-1\}$ untuk m-2 sisi tesisa di G adalah rainbow coloring. Jadi, $rc(G) \leq m-1$. Selanjutnya misalkan G adalah graf pohon dengan ukuran m. Asumsikan bahwa $rc(G) \leq m-1$. Misalkan c adalah suatu minimum rainbow coloring di G. Maka terdapat sisi e dan f sehingga c(e) = c(f). Asumsikan tanpa mengurangi perumuman, bahwa e = uv dan f = xy, dan G memiliki suatu u y path u, v, \cdots, x, y . Maka tidak terdapat rainbow u y path di G, kontradiksi dengan G mempunyai rainbow coloring. Jadi, haruslah G adalah graf pohon berukuran m.

Proposisi 2.2. [3] Misalkan C_n adalah graf lingkaran dengan banyak titik n, dimana $n \ge 4$ maka $rc(C_n) = src(C_n) = \lceil \frac{n}{2} \rceil$.

Bukti. Misalkan terdapat lingkaran C_n dengan $V(C_n) = \{v_1, v_2, \cdots, v_n, v_1\}$ dan $E(C_n) = \{v_i v_{i+1} | 1 \le i \le n\} \cup \{v_1 v_n\}$ untuk setiap i di G dengan $1 \le i \le n$. Pandang dua kasus berikut.

Kasus 1. n adalah genap.

Misalkan n=2k untuk bilangan bulat $k \geq 2$ maka

$$src(C_n) \ge rc(C_n) \ge diam(C_n) = k.$$

Konstruksikan pewarnaan sisi c_0 dari C_n sebagai berikut.

$$c_0(e_i) = \begin{cases} i, & \text{untuk } 1 \le i \le k; \\ i - k, & \text{untuk } k + 1 \le i \le n. \end{cases}$$

Berdasarkan Pertidaksamaan 1.1, maka berlaku $rc(C_n) \leq src(C_n) \leq k$, sehingga $rc(C_n) = src(C_n) = k.$

Kasus 2. n adalah ganjil.

Misalkan n=2k+1 untuk bilangan bulat $k\geq 2$. Definisikan pewarnaan sisi c_1 dari C_n dengan

$$c_0(e_i) = \left\{ \begin{aligned} i, & \text{untuk } 1 \leq i \leq k+1; \\ i-k-1, & \text{untuk } k+2 \leq i \leq n. \end{aligned} \right.$$

Karena c_1 adalah strong rainbow (k+1)-coloring dari C_n maka $rc(C_n) \leq src(C_n) \leq src(C_n)$ k+1. Karena $rc(C_n) \geq diam(C_n) = k$ maka $rc(C_n) = k$ atau $rc(C_n) = k+1$. Klaim bahwa $rc(C_n) = k + 1$. Asumsikan dengan kontradiksi bahwa $rc(C_n) = k$. Misalkan c' adalah suatu rainbow k-coloring dari C_n dan misalkan P adalah lintasan dari u ke v pada C_n . Maka P adalah lintasan u-v geodesic di C_n adalah rainbow path, sementara u-v path lainnya di C_n bukan rainbow path karena memiliki panjang k+1.

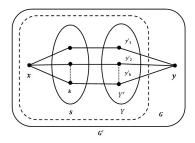
Tanpa mengurangi perumuman, misalkan $c'(v_{k+1}v_{k+2}) = k$. Pandang titik-titik v_1, v_{k+2} dan v_{k+2} . Karena lintasan $v_1 - v_{k+1}$ geodesic $P: v_1, v_2, \cdots, v_{k+1}$ adalah $rainbow\ path\ dan\ lintasan\ v_1-v_{k+2}\ geodesic,\ Q:v_1,v_n,\cdots v_{n-1},v_{k+2}\ adalah\ rainbow$ path, maka beberapa sisi di P dan Q diwarnai dengan warna k. Karena $v_2 - v_{k+2}$ $geodesic, v_2, v_3, \cdots, v_{k+2}$ adalah rainbow path maka $c'(v_1v_2) = k$. Dengan cara yang sama, $v_n - v_{k+1}$ geodesic, $v_n, v_{n-1}, v_{n-2} \cdots v_{k+1}$ sehingga $c'(v_n v_1) = k$ diperoleh $c'(v_1v_2) = c'(v_nv_1) = k$. Ini berarti, tidak terdapat raibow $v_2 - v_n$ path di G. Ini kontradiksi dengan c' adalah suatu $rainbow\ k$ -coloring dari C_n . Jadi, haruslah $rc(C_n) = src(C_n) = k + 1.$

Misalkan G adalah suatu graf dengan n titik. Himpunan k-vertex cut adalah $vertex\ cut\ dengan\ k$ elemen. Sebelum membuktikan Teorema 2.4, diberikan Lema 2.3 berikut.

Lema 2.3. [7] (Fan Lemma) Jika G adalah graf k-connected dengan $x \in V(G)$, $dan Y \subseteq V(G) - \{x\}$ sedemikian sehingga $|Y| \ge k$, maka G memuat suatu k - fandari x ke Y, yaitu ada sebuah k-Internally disjoint (x, Y)-path yang mana titik internalnya berbeda di Y.

 \mathbf{Bukti} . Misalkan G adalah suatu graf k-connected dengan S adalah vertex-cut minimal. Misalkan terdapat titik $x \in V(G)$. Misalkan Y adalah subhimpunan titik dari V(G) sedemikian sehingga $|Y| \geq k$. Karena $|Y| \geq k$ maka pilih $Y' \subseteq Y$ dengan |Y'| = k titik. Misalkan $Y' = \{y'_1, y'_2, \cdots, y'_k\}$. Konstruksi graf G' dari graf G dengan menambahkan satu titik g, kemudian menghubungkan g ke setiap titik di g'. Karena g adalah graf g-connected maka jelas bahwa g' adalah juga graf g-connected . Akibatnya, antara titik g dan titik g di g-terdapat g-terda

Sebagai ilustrasi perhatikan gambar berikut:



Gambar 1. Ilustrasi 1

Teorema berikut mengkaji tentang batas atas rainbow connection number untuk graf G yang mempunyai sifat 3-vertex connected, seperti yang telah dibahas dalam [7].

Teorema 2.4. [7] Jika G adalah graf sederhana yang bersifat 3-vertex connected dengan n titik maka

$$rc(G) \le 3(n+1)/5.$$

 ${\bf Bukti.}$ Misalkan Gadalah graf 3-vertex connected dengan ntitik dan misalkan Hmerupakan subgraf terhubung maksimal dari G dengan htitik sedemikian sehingga berlaku

$$rc(H) \le 3h/5 - 1/5.$$

Misalkan G dengan n=3. Karena G adalah graf 3-vertex connected, maka G memuat cycle. Jika G memuat suatu cycle C_3 maka H adalah G_3 karena G adalah subgraf terhubung maksimal. Sehingga memenuhi

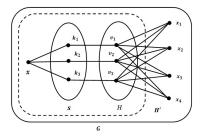
$$rc(C_3) = 1 < 8/5 = 9/5 - 1/5 = 3 \times 3/5 - 1/5 = 3h/5 - 1/5.$$

Misalkan G memuat C_k dimana $(k \ge 4)$ dan $(k \ne 5)$ sebagai subgraf, maka ambil $H = C_k$ karena memenuhi $rc(C_k) = \lceil k/2 \rceil \le 3k/5 - 1/5$.

Misalkan G memuat suatu $cycle\ C_5$, maka ambil H' sebagai graf dengan menambahkan satu sisi baru diluar C_5 untuk C_5 sehingga h=6. Maka diperoleh:

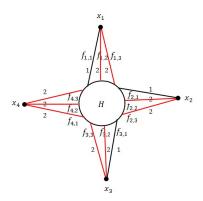
$$rc(H') = 3 < 17/5 = 18/5 - 1/5 = 3 \times 6/5 - 1/5 = 3h/5 - 1/5.$$

Klaim bahwa $h \ge n-3$. Dengan kontradiksi, misalkan h < n-3. Misalkan terdapat empat titik berbeda diluar H misalkan x_1, x_2, x_3, x_4 . Dengan Lema Fan, maka untuk setiap titik di x_1, x_2, x_3, x_4 terdapat 3-fan keH. Sebagai ilustrasi perhatikan Gambar 2.



Gambar 2. Ilustrasi 2

Asumsikan bahwa x_1, x_2, x_3, x_4 memiliki 3 titik yang bertetangga di H. Misalkan f_{ij} adalah sisi yang terkait dengan titik $x_i, j=1,2,3$. Tambahkan x_1,x_2,x_3,x_4 ke $H = \{v_1, v_2, v_3\}$ membentuk subgraf H'. Jadi $V(H') = \{v_1, v_2, v_3\} \cup \{x_1, x_2, x_3, x_4\}$ sehingga |V(H')| = h + 4 titik. Gunakan warna 1 dan 2 untuk mewarnai 12 sisi. Berikan warna 1 ke sisi f_{i1} untuk i=1,2,3 dan warna 2 untuk 9 sisi lainnya. Maka ${\cal H}'$ adalah $rainbow\ connected\ dengan\ dua warna baru. Sebagai ilustrasi perhatikan$ Gambar 3.



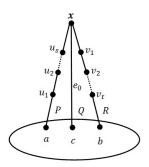
Gambar 3. Ilustrasi 3

Sehingga diperoleh

$$rc(H') \le rc(H) + 2 \le \frac{3h}{5} - \frac{1}{5} + 2 < \frac{3(h+4)}{5} - \frac{1}{5},$$

yang kontradiksi dengan h + 4 < n. Maka asumsi bahwa x_1, x_2, x_3, x_4 bertetangga dengan sembarang titik di H tidak berlaku. Akibatnya, jika terdapat empat titik di luar H, maka sekurang-kurangnya terdapat satu titik, sebut $x \in \{x_1, x_2, x_3, x_4\}$ di luar H yang mempunyai internally disjoint path x ke H dengan $d(x, a) \geq 2$ untuk suatu $a \in H$. Karena $x \notin H$, maka terdapat 3-fan dari x ke H.

Misalkan P,Q,R adalah tiga internally disjoint path yang menghubungkan x ke H. Misalkan P menghubungkan titik-titik x dan c, Q menghubungkan titik a,u_1,u_2,\cdots,u_s,x dan R menghubungkan titik-titik x,v_1,v_2,\cdots,v_t,b untuk suatu $a,b,c\in H$ dan $u_s,u_t\not\in H$. Perhatikan ilustrasi pada Gambar 4.



Gambar 4. Ilustrasi 4

Asumsikan $t \geq s$ untuk $t \geq 1$, dan $s+t \geq 3$. Dimana t adalah v_1, v_2, \cdots, v_t dan s adalah u_1, u_2, \cdots, u_s . Misalkan P adalah lintasan yang menghubungkan titik-titik $v_1, v_2, \cdots, v_t, x, u_1, u_2, \cdots, u_s$. Jika $v_1, v_2, \cdots, v_t, x, u_1, u_2, \cdots, u_s$ ditambahkan ke H, maka diperoleh subgraf diperluas, sebut H' dengan h+s+t+1 titik.

Jika s+t genap, maka s+t+2 sisi pada lintasan P yang menghubungkan titiktitik $a, u_1, u_2, \cdots, u_s, x, v_1, v_2, \cdots, v_t, b$ diwarnai dengan (s+t+2)/2 warna yang tidak terdapat pada H dengan cara mewarnai (s+t+2)/2 sisi pertama lintasan P diberi warna yang tidak terdapat pada H dan (s+t+2)/2 sisi berikutnya diberi warna yang terdapat pada (s+t+2)/2 sisi sebelumnya. Sisi e_0 diberi sebarang warna yang telah muncul di H. Dengan demikian H' adalah ton

Jika s+t ganjil, maka s+t+2 pada lintasan yang menghubungkan titik-titik $a, u_1, u_2, \cdots, u_s, x, v_1, v_2, \cdots, v_t, b$ diwarnai dengan (s+t+1)/2 warna yang tidak terdapat pada H dengan cara mewarnai (s+t+1)/2 sisi pertama pada lintasan diberi warna yang tidak terdapat pada H, dan (s+t+1)/2 sisi berikutnya diberi warna seperti (s+t+1)/2 sisi sebelumnya. Dengan demikian H' adalah rainbow connected. Sehingga diperoleh

$$rc(H') \le rc(H) + \lceil (s+t+2) \rceil / 2 \le 3h/5 - 1/5 + \lceil (s+t+2) \rceil \le 3(h+s+t+1)/5 - 1/5,$$

yang kontradiksi dengan h+t+s+1 < n. Jadi haruslah $1 \le s+t \le 2$. Pandang beberapa kasus berikut.

Kasus 1.
$$s + t = 2$$
 dan $Q = au_1x$, $R = xv_1b$

Karena setidaknya ada 4 titik diluar H, terdapat paling sedikit satu titik yang berbeda dari x, u_1 dan v_1 sebut dengan x_1 . Dengan memilih x tidak ada (x_1, x) -path, (x_1, u_1) -path, dan (x_1, v_1) -path tanpa menggunakan sembarang titik di H

kecuali hanya terdapat satu path yang panjangnya 2 menghubungkan x ke H melalui x_1 , katakanlah $S=xx_1c$ dengan $c\in H$. Dalam hal ini, kita hanya memperhatikan tiga path yaitu Q,R dan S.

Tambahkan titik x, u_1, v_1 dan x_1 ke H membentuk subgraf H' dengan h+4 titik. Dengan memberi warna 1 ke sisi au_1, bv_1 dan warna 2 ke sisi u_1x, cx_1 dan warna yang sudah ada di H ke sisi v_1x, xx_1 , jadi kontradiksi dengan pertidaksamaan:

$$rc(H') \le rc(H) + 2 \le \frac{3h}{5} - \frac{1}{5} + 2 < \frac{3(h+4)}{5} - \frac{1}{5}.$$

Dengan Lema Fan, terdapat tiga internally disjoint path yaitu (x_1, H) -jalur P', Q', S'. Dengan memilih x, panjang dari P', Q', S' hanya memiliki empat kemungkinan yaitu:

Subkasus 1.1 Panjang P'=1 dengan $P'=e'_0$, panjang Q'=1 dengan $Q'=e'_1$, panjang R'=1 dengan $R'=e'_2$.

Tambahkan x, u_1, v_1 dan x_1 ke H dan membentuk graf H' dari jumlah titik h+4. Berikan warna 1 pada $au_1, e_0, xv_1, e'_0, e'_1$ dan warna 2 pada u_1x, v_2b, e'_2 . Sehingga kontradiksi dengan pertidaksamaan:

$$rc(H') \le rc(H) + 2 \le \frac{3h}{5} - \frac{1}{5} + 2 < \frac{3(h+4)}{5} - \frac{1}{5}.$$

Subkasus 1.2 Panjang P'=1 dengan $P'=e_0'$, panjang Q'=1 dengan $Q'=e_1'$, panjang R' dengan $R'=x_1v_1'b'$.

Tambahkan x, u_1, v_1, x_1 dan v'_1 pada H dan membentuk graf yang lebih besar dari H' dimana h+5. Warnai sisi 1 pada $au_1, e_0, xv_1, e'_0, x_1v'_1$, warna 2 pada u_1x, v_1b, e'_1 dan warna 3 pada v'_1b' . Sehingga kontradiksi dengan pertidaksamaan:

$$rc(H') \le rc(H) + 3 \le \frac{3h}{5} - \frac{1}{5} + 3 < \frac{3(h+5)}{5} - \frac{1}{5}.$$

Subkasus 1.3 Panjang P'=1 dengan $P'=e'_0$, Panjang Q'=2 dengan $Q'=a'u'_1x_1$, panjang R'=2 dengan $R'=x_1v'_1b'$.

Tambahkan x, u_1, v_1, x_1, u_1' dan v_1' pada H dan membentuk graf yang lebih besar dari H' dimana h+6. Berikan warna 1 pada $au_1, e_0, xv_1, a'u_1', x_1v_1'$, warna 2 pada $u_1x, v_1b, u_1'x_1$ dan warna 3 pada $e_0', v_1'b'$. Sehingga kontradiksi dengan pertidaksamaan:

$$rc(H') \le rc(H) + 3 \le \frac{3h}{5} - \frac{1}{5} + 3 < \frac{3(h+6)}{5} - \frac{1}{5}.$$

Subkasus 1.4 Panjang P'=1 dengan $P'=e'_0$, panjang Q'=2 dengan $Q'=e'_1$, panjang R'=3 dengan $R'=x_1v'_1v'_2b'$.

Tambahkan x, u_1, v_1, x_1, u'_1 dan v'_2 pada H dan membentuk graf yang lebih besar dari H' dimana h+6. Warnai sisi 1 pada $v'_1v'_2$, warna 2 pada $x'_1v'_1$ dan warna 3 pada e'_0, e'_1, v'_2b' . Sehingga kontradiksi dengan pertidaksamaan:

$$rc(H') \le rc(H) + 3 \le \frac{3h}{5} - \frac{1}{5} + 3 < \frac{3(h+6)}{5} - \frac{1}{5}.$$

Kasus 2. s + t = 2 dan Q = ax dan $R = xv_1v_2b$.

Dari Lema Fan, terdapat tiga disjoint (v_1, H) . Jadi terdapat paling sedikit satu (v_1, H) -path S yang baru kecuali path v_1xa dan v_1v_2b . Dengan memilih x panjang

 P_3 haruslah paling banyak dua. Jika S mempunyai panjang 2, maka berlaku Kasus 1. Panjang S adalah 1, sehingga path axv_1, v_1v_2b dan S membangun struktur yang sama pada kasus 1.

Kasus 3. s + t = 1.

Karena $t \geq s$ maka t = 1. Asumsikan $Q = e_1$ dan $R = xv_1b$. Jadi terdapat paling sedikit dua titik berbeda diluar H yang berbeda dari x dan v_1 sebut x_1 dan x_2 . Sama halnya untuk i = 1, 2 tidak ada (x_i, x) -path dan (x_i, v_1) -path tanpa menggunakan sembarang titik di H. Jadi Terdapat juga tiga disjoint (x_1, H) -path yaitu P', Q', R' dan internally disjoint (x_2, H) -path yaitu P'', Q'', R''. Jika semua path ini mempunyai panjang satu, maka tambahkan x, v_1, x_1 dan x_2 ke H, dan membentuk graf H' mempunyai titik h + 4. Dengan memberi warna 1 ke sisi $e_0, xv_1, P', Q', P'', Q'',$ dan warna 2 ke sisi e_1, v_1b, R', R'' sehingga kontradiksi dengan pertidaksamaan:

$$rc(H') \le rc(H) + 2 \le \frac{3h}{5} - \frac{1}{5} + 2 < \frac{3(h+4)}{5} - \frac{1}{5}.$$

Tanpa mengurangi perumuman, asumsikan satu dari tiga (x_1,H) -path yaitu P',Q',R' mempunyai panjang 2. Misalkan $P'=e'_0,Q'=e'_1,R'=x_1v'_1b'$. Tambahkan x,v_1,x_1 dan v'_1 ke H, dan membentuk graf 'H' dengan jumlah titik h+4. Dengan mewarnai 1 ke sisi e_0,e_1,xv_1,v_1b , dan warna 2 ke sisi $e'_0,e'_1,x_1v'_1,v'_1b'$. Maka diperoleh $rc(H') \leq rc(H) + 2 \leq \frac{3h}{5} - \frac{1}{5} + 2 < \frac{3(h+4)}{5} - \frac{1}{5}$ yang kontradiksi dengan h+4 < n. Maka asumsi bahwa s+t=1 seperti yang diuraikan pada Kasus 3 tidak berlaku.

Dengan memperhatikan beberapa kasus di atas diperoleh:

$$\begin{split} rc(G) & \leq 3(n+1)/5, \\ \text{Untuk } h = n-3, \, rc(G) \leq rc(H) + 2 \leq 3(h-3)/5 - 1/5 + 2 < 3(n+1)/5, \\ \text{Untuk } h = n-2, \, rc(G) \leq rc(H) + 2 \leq 3(h-2)/5 - 1/5 + 2 = 3(n+1)/5, \\ \text{Untuk } h = n-1, \, rc(G) \leq rc(H) + 1 \leq 3(h-1)/5 - 1/5 + 2 < 3(n+1)/5. \quad \Box \end{split}$$

3. Kesimpulan

Pada tulisan ini telah dikaji kembali bahwa untuk graf G yang bersifat 3-vertex connected dengan n titik maka berlaku bahwa

$$rc(G) \le 3(n+1)/5.$$

4. Ucapan Terima Kasih

Penulis mengucapkan terima kasih kepada Bapak Prof. Dr. Syafrizal Sy, Ibu Dr. Lyra Yulianti, Bapak Dr. Muhafzan, Bapak Dr. Admi Nazra dan Bapak Dr. Mahdhivan Syafwan yang telah memberikan masukan dan saran sehingga tulisan ini dapat diselesaikan dengan baik.

Daftar Pustaka

[1] Caro, Y., A. Lev, Y. Roditty, Z Tuza, R. Yuster. 2008. On Rainbow Connection. The Electronic Journal of Combinatorics 15 (57): 1 – 13

- [2] Chartrand, G. 2006. Introduction to Graph Theory. McGraw-Hill. Boston.
- Chartrand, G. 2008. Rainbow Connection in Graphs. Math. Bohem. 133:85 –
- [4] Chandran, L. Sunil, dan Mathew, Roger. 2011. On Rainbow Connection Number and Connectivity. arXiv:1105.5704v1. India.
- [5] Diestel, R. 2010: $Graph\ Theory,\ 4^{nd}$ ed. Springer. New York.
- [6] Schiermeyer, I. 2008. Rainbow Connection in Graph with Minimum Degree Three. Lecture Notes On Computer Sciences. Springer-Verlag Berlin. 5874: 432 -437.
- [7] Li, Xueliang dan Shi, Yongtang. 2010. Rainbow Connection in 3-connectedgraphs. arXiv:1010.6131v1. China.