Jurnal Matematika UNAND Vol. **VI** No. **4** Hal. 37 – 42

ISSN: 2303-291X

©Jurusan Matematika FMIPA UNAND

PENENTUAN KELAS RAMSEY MINIMAL UNTUK $3K_2$ DAN $K_{1,3}$

EKA FERMANTIKA

Program Studi Magister Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas, Kampus UNAND Limau Manis Padang, Indonesia, email : ekafermantika21@gmail.com

Abstrak. Pada makalah ini akan dibahas tentang syarat cukup dan perlu untuk graf yang menjadi anggota $\mathcal{R}(3K_2, K_{1,3})$ serta akan ditentukan beberapa graf dengan 8 titik yang menjadi anggota $\mathcal{R}(3K_2, K_{1,3})$.

 $Kata\ Kunci$: Graf Ramsey minimal, pewarnaan-(G, H)

1. Pendahuluan

Misalkan diberikan graf G dan H sebarang. Notasi $F \to (G,H)$ menyatakan bahwa pada sebarang pewarnaan merah-biru terhadap semua sisi graf F, senantiasa diperoleh F yang memuat subgraf merah yang isomorfik dengan G atau subgraf biru yang isomorfik dengan H. Selanjutnya, suatu pewarnaan-(G,H) pada graf F didefinisikan sebagai suatu pewarnaan merah-biru terhadap semua sisi graf F sedemikian sehingga F tidak memuat subgraf merah G sekaligus tidak memuat subgraf biru H.

Pada artikel ini, kita akan mengkaji kembali tentang syarat perlu dan cukup bagi graf F yang memenuhi $F \to (3K_2, H)$ dan $K_{1,n}$ untuk $n \geq 1$, seperti yang telah dibahas dalam [2]. Dengan menggunakan pendekatan komputasi, dalam [8] telah didapatkan graf dengan m titik tertentu yang menjadi anggota kelas $\mathcal{R}(3K_2, K_{1,n})$ untuk $n \geq 1$. Dalam penelitian ini akan ditentukan graf dengan banyak titik ≥ 8 yang menjadi anggota kelas $\mathcal{R}(3K_2, K_{1,3})$.

Berikut adalah definisi dari graf Ramsey $(G,H)\text{-}\mathrm{Minimal}$ untuk graf G dan H sebarang.

Definisi 1.1. [1] Diberikan graf G dan H. Graf F dikatakan sebagai **graf Ramsey** (G, H)-minimal jika

- (1) $F \rightarrow (G, H)$,
- (2) $F^* \nrightarrow (G, H)$ untuk sebarang subgraf sejati $F^* \subset F$.

2. Syarat Cukup dan Perlu untuk Keanggotaan $\mathcal{R}(3K_2,K_{1,n})$

Pada bagian ini akan diberikan syarat cukup dan perlu bagi graf yang menjadi anggota kelas $\mathcal{R}(3K_2,K_{1,n})$.

Lema 2.1. [2] Misalkan F adalah graf dengan m titik. Maka $F \to (3K_2, K_{1,n})$ jika dan hanya jika

- (1) $F \{v, w\} \supseteq K_{1,n}, \forall v, w \in V(F)$.
- (2) $F v E(C_3) \supseteq K_{1,n}, \forall v \in V(F), C_3 \in F$.
- (3) $F E(2C_3) \supseteq K_{1,n}, \forall 2C_3 \in F$.
- (4) $F E(F^*) \supseteq K_{1,n}, \forall F^* \in F$, dimana F^* adalah subgraf dengan 5 titik.

Bukti. (\Rightarrow) Misalkan $F \rightarrow (3K_2, K_{1,n})$. Kemudian,

- (1) Misalkan terdapat dua titik $v, w \in V(F)$, sedemikian sehingga $K_{1,n} \nsubseteq F \{v, w\}$. Jika semua sisi yang terkait pada v atau w diwarnai dengan merah, sementara sisi lainnya dari F diwarnai biru, maka diperoleh suatu pewarnaan- $(3K_2, K_{1,n})$ pada F. Hal ini bertentangan dengan asumsi bahwa $F \to (3K_2, K_{1,n})$
- (2) Misalkan terdapat suatu titik $v \in V(F)$ dan suatu C_3 di F, sedemikian sehingga $K_{1,n} \nsubseteq F v E(C_3)$. Jika semua sisi yang terkait pada v diwarnai dengan merah dan sisi dari C_3 diwarnai dengan merah, diperoleh suatu pewarnaan- $(3K_2, K_{1,n})$ pada F. Hal ini bertentangan dengan asumsi bahwa $F \to (3K_2, K_{1,n})$.
- (3) Misalkan sifat (3) tidak berlaku untuk suatu $2C_3$ di F, sedemikian sehingga $K_{1,n} \nsubseteq F E(2C_3)$. Jika sisi dari $2C_3$ diwarnai merah sementara sisi lainnya diwarnai biru, maka diperoleh suatu pewarnaan- $(3K_2, K_{1,n})$ pada F. Hal ini bertentangan dengan asumsi bahwa $F \to (3K_2, K_{1,n})$.
- (4) Misalkan sifat (4) tidak berlaku untuk suatu F^* di F, dengan F^* adalah subgraf dengan lima titik, sedemikian sehingga $K_{1,n} \nsubseteq F E(F^*)$. Jika sisi dari F^* diwarnai merah sementara sisi lainnya diwarnai biru, maka diperoleh suatu pewarnaan- $(3K_2, K_{1,n})$ pada F. Hal ini bertentangan dengan asumsi bahwa $F \to (3K_2, K_{1,n})$.
- (\Leftarrow) Sekarang kita asumsikan (1) − (4) terpenuhi. Maka terdapat 2-pewarnaan sebarang pada F yang tidak memuat $3K_2$ merah, kemudian sisi merah atau semua sisi merah membentuk salah satu subgraf berikut di F:
- (a) $K_{1,s} \cup K_{1,t} \ \forall s, t \in N$.
- (b) Graf terhubung yang dibentuk dari $K_{1,s}$ dan $K_{1,t}$ dengan mengidentifikasi setidaknya satu titik masing-masing dari kedua graf tersebut.
- (c) $K_{1,s} \cup C_3 \ \forall s \in N$
- (d) Graf terhubung yang dibentuk dari $K_{1,s}$ dan C_3 dengan mengidentifikasi seti-daknya satu titik masing-masing dari kedua graf tersebut.
- (e) $2C_3$ atau
- (f) Graf yang terdiri dari paling banyak 5 titik.

Keberadaan $K_{1,n}$ biru dijamin oleh asumsi (1) untuk kasus (a) dan (b), asumsi (2) untuk kasus (c) dan (d), asumsi (3) untuk kasus (e) dan asumsi (4) untuk kasus (f)

Lema 2.2. [2] Jika $F \in \mathcal{R}(3K_2, K_{1,n})$, maka $n \leq \Delta(F) \leq n + 3$.

Bukti. Jelas bahwa $n \leq \Delta(F)$. Misalkan $\Delta(F) \geq n+4$ dan terdapat $v \in V$ sedemikian sehingga $d(v) = \Delta(F)$. Maka berdasarkan Lema 2.1, terdapat $w \in V(F)$ sedemikian sehingga terdapat paling sedikit n sisi yang terkait dengan w, tetapi tidak terkait dengan v di F - v.

l
Misalkan e = vw jika tidak misalkan e adalah sebarang sisi terkait dengan v. Maka dari $F \in \mathcal{R}(3K_2, K_{1,n})$ diperoleh pewarnaan- $(3K_2, K_{1,n})$ pada F - e katakan pewarnaan tersebut dengan λ . Dalam λ terdapat paling sedikit empat sisi merah yang terkait dengan v dan paling sedikit satu sisi merah katakan e_1 , dari n sisi merah terkait pada w tetapi tidak terkait dengan v.

Ambil f,g,h,i menjadi titik lain yang keempat sisinya diwarna
i merah yang terkait dengan v, kita definisikan pewarnaan baru katakan $\lambda*'$, pada sisi F
 sedemikian sehingga sisi $\lambda*'(e) = \text{merah dan } \lambda*'(x) = \lambda(x)$ untuk setiap sisi di F. Maka F harus memuat $3K_2$ merah.

Oleh karena itu, ada $2K_2$ merah di F-e pada λ , dengan tidak memamasukkan tiik v. Selanjutnya keempat titik f,g,h,i harus memuat $2K_2$ merah ,jika tidak akan terdapat $3K_2$ merah pada $(3K_2, K_{1,n})$ di F-e pada λ . Dengan demikian titik f,g,h,i menjadi sisi $2K_2$ merah.

Sekarang dengan adanya e_1 , terkait atau tidak terkait untuk semua f,g,h,i menyatakan $3K_2$ merah pada F - e pada λ . Hal ini bertentangan dengan asumsi bahwa $F \in \mathcal{R}(3K_2, K_{1,n})$.

Lema 2.3. [2] *Misalkan*
$$F \in \mathcal{R}(3K_2, K_{1,n})$$
, *maka* $F - v \to (2K_2, K_{1,n}), \forall v \in V(F)$.

Bukti. Andaikan terdapat suatu titik $v \in V(F)$ sedemikian sehingga $F - v \Rightarrow (2K_2, K_{1,n})$, maka diperoleh pewarnaan- $(2K_2, K_{1,n})$ pada F - v. Dengan menggunakan suatu pewarnaan- $(2K_2, K_{1,n})$ pada F - v, jika semua sisi yang terkait pada v di F diwarnai dengan merah, maka diperoleh pewarnaan- $(3K_2, K_{1,n})$ dari F. Hal ini bertentangan dengan asumsi bahwa $F \in \mathcal{R}(3K_2, K_{1,n})$.

Berdasarkan Lema 2.1, Lema 2.2 dan Lema 2.3 diperoleh syarat cukup dan perlu untuk keanggotaan $\mathcal{R}(3K_2, K_{1,3})$, sebagai berikut.

Akibat 2.4. Misalkan $F \in \mathcal{R}(3K_2, K_{1,3})$, maka,

- (1) $F \{v, w\} \supseteq K_{1,3}, \forall v, w \in V(F)$.
- (2) $F v E(C_3) \supseteq K_{1,3}, \forall v \in V(F), C_3 \in F$.
- (3) $F E(2C_3) \supseteq K_{1,3}, \forall 2C_3 \in F$.
- (4) $F E(F^*) \supseteq K_{1,3}, \forall F^* \in F$, dimana F^* adalah subgraf dengan 5 titik.

Akibat 2.5. *Jika* $F \in \mathcal{R}(3K_2, K_{1,3})$. *Maka* $n \leq \Delta(F) \leq n + 3$.

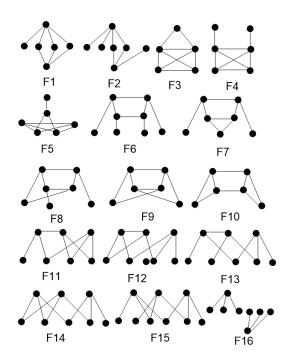
Akibat 2.6. $F \in \mathcal{R}(3K_2, K_{1,3})$. Maka $F - v \to (2K_2, K_{1,3}), \forall v \in V(F)$.

3. Anggota $\mathcal{R}(3K_2, K_{1,3})$

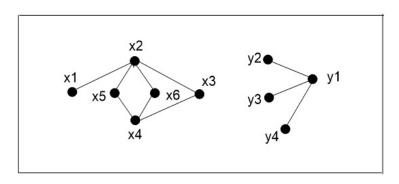
Berikut adalah beberapa graf yang menjadi anggota $\mathcal{R}(3K_2, K_{1,3})$ yang berasal dari graf yang jadi anggota $\mathcal{R}(2K_2, K_{1,3})$.

$40\quad Eka\ Fermantika$

Teorema 3.1. Misalkan terdapat $\mathcal{A} = \{F_i \mid 1 \leq i \leq 16\} \subseteq \mathcal{R}(2K_2, K_{1,3})$ (lihat Gambar 1). Maka $G \cup K_{1,3} \in \mathcal{R}(3K_2, K_{1,3})$, untuk $G \in \mathcal{A}$.



Gambar 1. [2] Anggota $\mathcal{R}(2K_2, K_{1,3})$



F1 U K 1,3

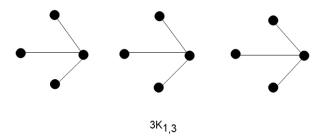
Gambar 2. Graf $F_1 \cup K_{1,3}$

Bukti. Akan ditunjukkan bahwa $F_1 \cup K_{1,3} \in \mathcal{R}(3K_2,K_{1,3})$. Untuk graf lainnya

dalam himpunan \mathcal{A} , pembuktian dilakukan dengan cara serupa. Akan ditunjukkan bahwa $F_1 \cup K_{1,3} \in \mathcal{R}(3K_2, K_{1,3})$. Pandang sebarang pewarnaan merah biru terhadap semua sisi graf $F_1 \cup K_{1,3}$. Misalkan tidak terdapat $3K_2$ merah dalam pewarnaan tersebut. Maka subgraf yang diinduksi oleh sisi merah berbentuk $K_{1,4}$ dan $K_{1,3}$. Untuk setiap kemungkinan tersebut selalu diperoleh $K_{1,3}$ biru. Sehingga $F_1 \cup K_{1,3} \in \mathcal{R}(3K_2, K_{1,3}).$

Selanjutnya akan dibuktikan bahwa $(F_1 \cup K_{1,3}) - e \nrightarrow (3K_2, K_{1,3})$ untuk sebarang $e \in E(F_1 \cup K_{1,3})$. Notasikan $V(F_1 \cup K_{1,3}) = \{x_1, x_2, x_3, x_4, x_5, x_6\} \cup \{y_1, y_2, y_3, y_4\}$ $\operatorname{dan} E(F_1 \cup K_{1,3}) = \{x_1 x_2, x_2 x_3, x_2 x_5, x_2 x_6, x_3 x_4, x_4, x_5, x_4 x_6 \cup y_1 y_2, y_1 y_3, y_1 y_4\}.$ Misalkan e adalah sisi x_1x_2 . Maka warnai sisi $x_2x_6, x_4x_6, y_1y_2, y_1y_3, y_1y_4$ dengan merah, sementara sisi lainnya diwarnai biru sedemikian sehingga tidak diperoleh $K_{1,3}$ biru dalam pewarnaan tersebut. Sehingga diperoleh $(F_1 \cup K_{1,3}) - e \rightarrow$ $(3K_2, K_{1,3})$ untuk setiap $e \in (F_1 \cup K_{1,3})$. Maka $F_1 \cup K_{1,3} \in \mathcal{R}(3K_2, K_{1,3})$.

Teorema 3.2. Satu-satunya graf dengan tiga komponen yang berada dalam $\mathcal{R}(3K_2, K_{1,3})$ adalah $3K_{1,3}$.

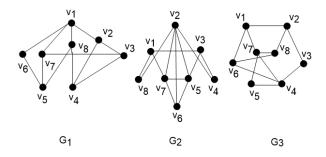


Gambar 3. $3K_{1,3} \in \mathcal{R}(3K_2, 3K_{1,3})$

Bukti. Akan ditunjukkan bahwa $3K_{1,3} \in \mathcal{R}(3K_2, K_{1,3})$. Misalkan tidak terdapat $3K_2$ merah pada sebarang pewarnaan merah-biru terhadap sisi-sisi $3K_{1,3}$. Maka subgraf yang diinduksi oleh sisi-sisi merah berbentuk dua buah $K_{1,3}$, sementara sisi lainnya dari $3K_{1,3}$ berwarna biru. Maka diperoleh $K_{1,3}$ biru pada pewarnaan tersebut. Sebaliknya dengan cara yang sama, jika diandaikan tidak terdapat $K_{1,3}$ biru maka akan diperoleh $3K_2$ merah dalam pewarnaan tersebut. Sehingga $3K_{1,3} \rightarrow$ $\mathcal{R}(3K_2, K_{1,3}).$

Selanjutnya akan ditunjukkan bahwa $3K_{1,3}^* := 3K_{1,3} - e \nrightarrow (3K_2, K_{1,3})$ untuk sebarang $e \in E(3K_{1,3})$. Misalkan sisi e sebarang dihapus dari salah satu $K_{1,3}$. Maka $3K_{1,3}^*$ terdiri dari satu graf P_3 dan dua buah $K_{1,3}$. Warnai dua buah $K_{1,3}$ masing-masing sisi $K_{1,3}$ dengan merah, dan warnai dengan biru sisi-sisi yang tersisa lainnya. Maka tidak diperoleh $K_{1,3}$ biru pada pewarnaan tersebut. Terbukti bahwa $3K_{1,3} \in \mathcal{R}(3K_2, K_{1,3}).$

Teorema 3.3. Misalkan diberikan graf $3K_2$ dan $K_{1,3}$. Maka $\mathcal{R}(3K_2, K_{1,3}) \supseteq$ $\{G_1, G_2, G_3\}.$



Gambar 4. $\{G_1, G_2, G_3\} \subseteq \mathcal{R}(3K_2, K_{1,3})$

Bukti. Akan ditunjukkan bahwa G_1 adalah anggota $\mathcal{R}(3K_2,K_{1,3})$. Untuk graf G_2 dan G_3 , pembuktian dilakukan dengan cara serupa. Akan ditunjukkan bahwa $G_1 \rightarrow (3K_2,K_{1,3})$. Pandang sebarang pewarnaan merah-biru terhadap sisi G_1 . Misalkan tidak terdapat $3K_2$ merah dalam pewarnaan tersebut. Maka subgraf yang diinduksi oleh sisi-sisi merah berbentuk $K_{1,3}$ dan $K_{1,4}$, sementara sisi lainnya berwarna biru. Sehingga $G_1 \rightarrow \mathcal{R}(3K_2,K_{1,3})$.

Selanjutnya akan dibuktikan bahwa $G_1^* := G_1 - e \rightarrow (3K_2, K_{1,3})$ untuk sebarang $e \in E(G_1)$. Notasikan $V(G_1) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ dan $E(G_1) = \{v_1v_2, v_1v_6, v_1v_7, v_1v_8, v_2v_3, v_2v_4, v_3v_4, v_3v_7, v_4v_8, v_5v_6, v_5v_7, v_5v_8\}$. Misalkan sisi $e = v_1v_2$. Maka warnai sisi $v_1v_7, v_1v_8, v_3v_7, v_4v_8, v_5v_7, v_5v_8$ dengan merah, sementara sisi lainnya diwarnai biru sedemukian sehingga tidak diperoleh $K_{1,3}$ biru dalam pewarnaan tersebut. Untuk e lainnya pembuktian dilakukan dengan cara yang serupa. Sehingga diperoleh $G_1 \rightarrow (3K_2, K_{1,3})$ Maka $G_1 \in \mathcal{R}(3K_2, K_{1,3})$.

4. Kesimpulan

Pada makalah ini diperoleh syarat perlu keanggotaan $\mathcal{R}(3K_2, K_{1,3})$, seperti pada Akibat 2.4, Akibat 2.5 dan Akibat 2.6. Dengan menggunakan syarat-syarat tersebut diperoleh bahwa terdapat beberapa graf yang menjadi anggota $\mathcal{R}(3K_2, K_{1,3})$, antara lain adalah graf $G \cup K_{1,3}$, untuk $G \in \{F_i \mid 1 \leq i \leq 16\}$, dimana $F_i \in \mathcal{R}(2K_2, K_{1,3})$; graf $3K_{1,3}$ seperti pada Gambar 3 dan graf G_1, G_2, G_3 seperti pada Gambar 4.

Daftar Pustaka

- [1] Burr, S. A., Erdos, P., dan Lovasz, L., (1976): On Graphs of Ramsey Type, Ars Combinatoria, 1, 167–190.
- [2] Muhshi, H., dan Baskoro, E. T.,(2015): Matching-Star Ramsey minimal Graphs, *Mathematics in Computer Science*, **9**, 443 452.
- [3] Yulianti, L., (2011): Kelas Ramsey Minimal Untuk Kombinasi Graf Dua Sisi Dengan Siklus, Disertasi (Tidak diterbitkan), Program Studi Doktor Matematika Institut Teknologi Bandung, Bandung.