Jurnal Matematika UNAND Vol. **VIII** No. **1** Hal. 209-214

Edisi Mei 2019 ISSN: 2303–291X

©Jurusan Matematika FMIPA UNAND

$\begin{array}{c} RAINBOW\ CONNECTION\ {\rm PADA\ GRAF} \\ AMALGAMASI\ TANGGA\ SEGITIGA\ DIPERUMUM \\ HOMOGEN \end{array}$

MUHARDIANSYAH, LYRA YULIANTI, ADMI NAZRA

Program Studi S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas, Kampus UNAND Limau Manis Padang, Indonesia. email: muhardiansyah97@qmail.com

Diterima 9 Maret 2019 - Direvisi 7 April 2019 - Dipublikasikan 7 Mei 2019

Abstrak. Untuk graf G terhubung dan tak trivial, dan k suatu bilangan bulat positif, misalkan $c: E(G) \to \{1, 2, \cdots, k\}$ suatu pewarnaan sisi di G, dimana sisi yang bertetangga boleh diberi warna yang sama. Suatu lintasan di G dikatakan lintasan rainbow iika tidak ada dua sisi di lintasan tersebut memiliki warna yang sama. Graf G dikatakan $rainbow\ connected\$ oleh pewarnaan cjikaGmemuat lintasan $rainbow\ u-v$ untuk setiap titik u dan v di G. Dalam konteks ini, pewarnaan c disebut rainbow edge coloring. Jika c adalah rainbow edge coloring dengan k warna digunakan, maka c disebut rain $bow\ k$ -coloring. Jika k adalah bilangan bulat positif yang minimum, maka k adalah bilangan rainbow connection dari graf G yang dinotasikan dengan rc(G) = k. Untuk $m \in \mathbb{N}$ dan $m \geq 2$, misalkan $\{G_1, G_2, \cdots, G_m\}$ adalah kumpulan hingga dari graf terhubung dan tak trivial, dan $v_{0,i}$ adalah sebuah titik graf G_i untuk $1 \leq i \leq m$. Amalgamasi G_1, G_2, \cdots, G_m yang dinotasikan dengan $Amal\{G_i, v_{0,i}\}_{i=1}^m$ adalah graf yang berasal dari graf G_1, G_2, \cdots, G_m dengan mengidentifikasi titik-titik $v_{0,1}, v_{0,2}, \cdots, v_{0,m}$ sedemikian sehingga $v_{0,1}=v_{0,2}=\cdots=v_{0,m}$ pada graf $Amal\{G_i,v_{0,i}\}_{i=1}^m$. Graf $Amal\{Tr_n,v\}_m$ adalah graf amalgamasi m buah graf Tr_n , untuk $m \geq 2$. Pada makalah ini akan ditentukan bilangan rainbow connection pada graf amalgamasi tangga segitiga diperumum homogen $Amal\{Tr_4, v\}_m$ untuk $m \ge 2$.

 $Kata\ Kunci:\ bilangan\ rainbow\ connection,$ graf amalgamasi tangga segitiga diperumum homogen

1. Pendahuluan

maka k adalah bilangan rainbow connection dari graf G yang dinotasikan dengan rc(G) = k. Jika c pewarnaan sisi G dengan rc(G) warna digunakan, maka c disebut minimum rainbow coloring.

Misalkan c suatu pewarnaan rainbow edge coloring pada graf terhubung dan tak trivial G. Untuk dua titik u dan v di G, rainbow geodesic u-v adalah lintasan rainbow dengan panjang d(u,v). Graf G dikatakan strongly rainbow-connected jika G memuat suatu lintasan rainbow geodesic u-v untuk setiap titik u dan v di G. Dalam konteks ini, pewarnaan c disebut strong rainbow coloring. Jika k adalah bilangan bulat positif yang minimum dan c adalah strong rainbow k-coloring, maka k adalah bilangan strong rainbow connection dari graf G yang dinotasikan dengan src(G) = k.

Chartrand, dkk [3] menyatakan bahwa untuk setiap graf G terhubung, tak trivial dan berukuran m, hubungan diam(G), rc(G) dan src(G) dinyatakan dalam pertaksamaan berikut.

$$diam(G) \le rc(G) \le src(G) \le m$$
.

Chartrand, dkk [3] telah menentukan bilangan rainbow connection dan strong rainbow connection dari beberapa kelas graf khusus seperti graf pohon, graf lengkap, graf roda, graf bipartit lengkap dan graf multipartit lengkap. Li, dkk [5] telah menentukan bilangan rainbow connection pada graf 3-connected. Sy dkk [6] telah menentukan bilangan rainbow connection pada graf fan dan graf sun. Fitriani, dkk [4] telah menentukan batas-batas bilangan rainbow connection pada graf hasil amalgamasi. Yulianti dkk [7] telah melakukan penentuan bilangan rainbow connection dari graf tangga segitiga diperumum. Pada makalah ini akan ditentukan bilangan rainbow connection pada graf amalgamasi tangga segitiga diperumum homogen $Amal\{Tr_n, v\}_m$ untuk n = 4 dan $m \geq 2$.

2. Landasan Teori

Definisi 2.1 berikut merupakan definisi graf amalgamasi yang diambil dalam [2].

Definisi 2.1. [2] Untuk $m \in \mathbb{N}$ dan $m \geq 2$, misalkan $\{G_1, G_2, \cdots, G_m\}$ adalah kumpulan hingga dari graf terhubung dan tak trivial, dan $v_{0,i}$ adalah sebuah titik graf G_i untuk $1 \leq i \leq m$ yang dinamakan dengan titik terminal. Amalgamasi G_1, G_2, \cdots, G_m yang dinotasikan dengan $Amal\{G_i, v_{0,i}\}_{i=1}^m$ adalah graf yang berasal dari graf G_1, G_2, \cdots, G_m dengan mengidentifikasi titik-titik terminal $v_{0,1}, v_{0,2}, \cdots, v_{0,m}$ sedemikian sehingga $v_{0,1} = v_{0,2} = \cdots = v_{0,m}$ pada graf $Amal\{G_i, v_{0,i}\}_{i=1}^m$.

Graf amalgamasi tangga segitiga diperumum homogen adalah graf yang diperoleh dari hasil amalgamasi m-buah graf tangga segitiga diperumum yang homogen (setiap m-buah graf tangga segitiga diperumum tersebut berorde dan berukuran sama) dan titik terminal yang diidentifikasi adalah titik yang sama dari m-buah graf tangga segitiga diperumum tersebut.

Definisi 2.2. Graf tangga segitiga diperumum Tr_n untuk $n \geq 2$ adalah graf dengan himpunan titik

$$V(Tr_n) = \{v\} \cup \{v_{i,j} \mid 1 \le j \le n - i + 1, 1 \le i \le n\}$$

dan himpunan sisi

$$E(Tr_n) = \{vv_{1,j} \mid 1 \le j \le n\} \cup \{v_{i,j}v_{i,j+1} \mid 1 \le i \le n-1, 1 \le j \le n-i\} \cup \{v_{i,j}v_{i+1,j} \mid 1 \le j \le n-1, 1 \le i \le n-j\} \cup \{v_{i,j}v_{i+1,j-1} \mid 2 \le j \le n, 1 \le i \le j-1\}.$$

Yulianti dkk [7] telah memperoleh bilangan rainbow connection dari graf tangga segitiga diperumum Tr_n untuk n bilangan bulat positif dengan $n \geq 2$. Diameter dari graf Tr_n adalah n, yang dinotasikan dengan $diam(Tr_n) = n$. Bilangan rainbowconnection dari graf Tr_n dinyatakan dalam Teorema 2.3 berikut.

Teorema 2.3. [7] Misalkan Tr_n adalah graf tangga segitiga diperumum dan $n \geq 2$. Maka bilangan rainbow connection untuk qraf tangga segitiqa yang diperumum Tr_n adalah

$$rc(Tr_n) = n.$$

Fitriani dkk [4] telah menentukan batas-batas dari bilangan rainbow connection pada graf hasil amalgamasi. Batas-batas dari bilangan rainbow connection tersebut dinyatakan dalam Teorema 2.4 berikut.

Teorema 2.4. [4] Untuk $t \in N, t \geq 2$, misalkan $\{G_i \mid i \in \{1, 2, \dots, t\}\}$ suatu himpunan hingga dari graf-graf dan setiap G_i mempunyai titik terminal v_{0i} . Jika Gadalah amalgamasi dari G_1, G_2, \cdots, G_t , maka

$$diam(G) \le rc(G) \le \sum_{i=1}^{t} rc(G_i).$$

3. Pembahasan

Untuk $i=1,2,\cdots,m$ dan $m\in\mathbb{N}$, graf $Tr_4^{(i)}$ adalah graf tangga segitiga diperumum ke-i, dengan

$$V(Tr_4^{(i)}) = \{v_i\} \cup \{v_{i,j,k} \mid 1 \le j \le 4, 1 \le k \le 5 - j\}$$

dan

$$E(Tr_4^{(i)}) = \{v_{i,j,k}v_{i,j,k+1} \mid 1 \le j \le 3, 1 \le k \le 4 - j\}$$

$$\cup \{v_{i,j,k}v_{i,j+1,k} \mid 1 \le k \le 3, 1 \le j \le 4 - k\}$$

$$\cup \{v_{i,j,k}v_{i,j+1,k-1} \mid 2 \le k \le 4, 1 \le j \le k - 1\})$$

$$\cup \{v_{i}v_{i,1,k} \mid 1 \le k \le 4\}.$$

Untuk $1 \leq i \leq m$, misalkan graf $Amal\{G_i, v_{0,i}\}_{i=1}^m$ dengan $G_i = Tr_n^{(i)}$ dan $v_{0,i} = v_i$, $v_i \in V(Tr_4^{(i)})$. Dengan mengidentifikasi setiap titik $v_{0,i}$ untuk $1 \leq i \leq m$, maka $v_{0,1}=v_{0,2}=\cdots=v_{0,m}$ pada graf $Amal\{G_i,v_{0,i}\}_{i=1}^m$. Hasil identifikasi titik-titik $v_{0,i} \ (1 \leq i \leq m)$ adalah sebuah titik baru, kali ini titik baru tersebut dinamakan dengan titik v. Secara sederhana graf $Amal\{G_i, v_{0,i}\}_{i=1}^m$ dengan $G_i = Tr_n^{(i)}$ dan $v_{0,i}=v_i$ dinotasikan dengan $Amal\{Tr_n,v\}_m.$ Dengan demikian, untuk $n\geq 2$ dan $m \geq 2$, graf $Amal\{Tr_n,v\}_m$ adalah graf amalgamasi tangga segitiga diperumum homogen dengan himpunan titik

$$V(Amal\{Tr_n, v\}_m) = \{v\} \cup \{v_{i,j,k} \mid 1 \le i \le m, 1 \le j \le n, 1 \le k \le n - j + 1\}$$
(3.1)

dan himpunan sisi

$$E(Amal\{Tr_{n}, v\}_{m}) = \{v_{i,j,k}v_{i,j,k+1} \mid 1 \leq i \leq m, 1 \leq j \leq n-1, 1 \leq k \leq n-j\} \cup \{v_{i,j,k}v_{i,j+1,k} \mid 1 \leq i \leq m, 1 \leq k \leq n-1, 1 \leq j \leq n-k\} \cup \{v_{i,j,k}v_{i,j+1,k-1} \mid 1 \leq i \leq m, 2 \leq k \leq n, 1 \leq j \leq k-1\} \cup \{vv_{i,1,k} \mid 1 \leq i \leq m, 1 \leq k \leq n\}.$$

$$(3.2)$$

Teorema 3.1. Misalkan Amal $\{Tr_4, v\}_m$ adalah graf amalgamasi tangga segitiga diperumum homogen dengan $m \geq 2$. Maka

$$rc(Amal\{Tr_4, v\}_m) = 8.$$

Bukti. Akan ditunjukkan $rc(Amal\{Tr_4,v\}_m)=8$, yaitu dengan menunjukkan $rc(Amal\{Tr_4,v\}_m)\geq 8$ dan $rc(Amal\{Tr_4,v\}_m)\leq 8$. Misalkan graf $Amal\{Tr_4,v\}_m$ untuk $m\geq 2$ dengan himpunan titik yang didefinisikan pada persamaan (3.1) dan himpunan sisi yang didefinisikan pada persamaan (3.2). Dapat diamati bahwa $diam(Amal\{Tr_4,v\}_m)=8$. Dengan demikian, diperoleh $rc(Amal\{Tr_4,v\}_m)\geq diam(Amal\{Tr_4,v\}_m)=8$. Selanjutnya akan ditunjukkan $rc(Amal\{Tr_4,v\}_m)\leq 8$. Dikonstruksi sebuah pewarnaan sisi $c:E(Amal\{Tr_4,v\}_m)\rightarrow \{1,2,3,4,5,6,7,8\}$ pada $Amal\{Tr_4,v\}_m$ yang didefinisikan sebagai

$$c(e) = \begin{cases} 1, & \text{jika } e = vv_{i,1,1} \\ 2k, & \text{jika } e = vv_{i,1,k}, \text{ untuk } 2 \leq k \leq 4 \\ j+k, & \text{jika } e = v_{i,j,k}v_{i,j,k+1}, \text{ untuk } 1 \leq k \leq 4-j \text{ dan } 1 \leq j \leq 3 \\ j+2k, & \text{jika } e = v_{i,j,k}v_{i,j+1,k}, \text{ untuk } 1 \leq k \leq 4-j \text{ dan } 1 \leq j \leq 3 \\ k+j, & \text{jika } e = v_{i,j,k}v_{i,j+1,k}, \text{ untuk } 1 \leq j \leq 4-k \text{ dan } 1 \leq k \leq 3 \end{cases}$$

untuk $1 \le i \le m$.

Pandang x dan y adalah dua titik sebarang pada graf $Amal\{Tr_4,v\}_m$. Jelas setiap titik x dan y yang bertetangga di $Amal\{Tr_4,v\}_m$ terdapat lintasan rainbow x-y di $Amal\{Tr_4,v\}_m$. Misalkan $x=v_{i,p,q}$ atau x=v dan $y=v_{l,r,s}$, untuk suatu $p,q,r,s\in\{1,2,3,4\}$ dan suatu $i,l\in\{1,2,\cdots,m\}$. Maka lintasan rainbow x-y untuk x dan y yang tidak bertetangga di $Amal\{Tr_4,v\}_m$ ditunjukkan dalam tiga kasus berikut.

Kasus 1. x=v dan $y=v_{l,r,s}$. Terdapat lintasan rainbow x-y, yaitu $x=v,v_{l,1,r+s-1},v_{l,2,r+s-2},v_{l,3,r+s-3},\cdots,v_{l,r-1,s+1},v_{l,r,s}=y$.

Kasus 2. $x=v_{i,p,q}$ dan $y=v_{l,r,s}$, untuk i=l dan $p\leq r$. Pada kasus ini, dibagi menjadi empat subkasus berikut.

Subkasus 2.1. p = r dan q < s. Terdapat lintasan rainbow x - y, yaitu $x = v_{i,p,q}, v_{i,p,q+1}, v_{i,p,q+2}, \cdots, v_{i,p,s-1}, v_{i,p,s} = y$.

Subkasus 2.2. p < r dan p + q < r + s. Terdapat lintasan rainbow x - y, yaitu x = s $v_{i,p,q}, v_{i,p,q+1}, \cdots, v_{i,p,t}, v_{i,p+1,t-1}, v_{i,p+2,t-2}, \cdots, v_{i,r,s} = y$, dimana t = r + s - p. **Subkasus 2.3.** p < r dan p + q > r + s. Terdapat lintasan rainbow x - y, yaitu $x = v_{i,p,q}, v_{i,p+1,q-1}, \cdots, v_{i,r,h}, v_{i,r,h-1}, v_{i,r,h-2}, \cdots, v_{i,r,s} = y), \text{dimana } h = p + q - r.$ **Subkasus 2.4.** p + q = r + s dan p < r. Terdapat lintasan rainbow x - y, yaitu $x = v_{i,p,q}, v_{i,p+1,q-1}, \cdots, v_{i,r,s} = y.$

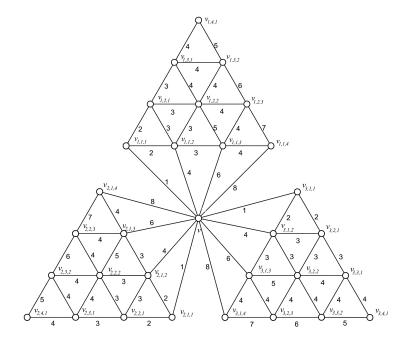
Kasus 3. $x=v_{i,p,q}$ dan $y=v_{l,r,s}$ untuk $i\neq l$. Pada kasus ini, dibagi dalam dua subkasus berikut.

Subkasus 3.1. $p + q \le r + s$. Terdapat lintasan rainbow x - y, yaitu $x = v_{i,p,q}, v_{i,p,q-1}, \cdots, v_{i,p,1}, v_{i,p-1,1}, v_{i,p-2,1}, \cdots, v_{i,1,1}, v, v_{l,1,4}, v_{l,2,3}, \cdots, v_{l,r,5-r},$ $v_{l,r,4-r}, v_{l,r,3-r}, \cdots, v_{l,r,s} = y.$

Subkasus 3.2. p + q > r + s. Terdapat lintasan rainbow x - y, yaitu x = s $v_{i,p,q}, v_{i,p,q+1}, \cdots, v_{i,p,5-p}, v_{i,p-1,6-p}, \cdots, v_{i,1,4}, v, v_{l,1,1}, v_{l,2,1}, \cdots, v_{l,r,1}, v_{l,r,2}, \cdots, v_{l,r,1}, v_{l,r,2}, \cdots, v_{l,r,n}, v_{l,n}, v_{l,$ $v_{l,r,s} = y$.

Dari ketiga kasus menunjukkan bahwa terdapat lintasan rainbow x - y untuk setiap x dan y yang tidak bertetangga di $Amal\{Tr_4,v\}_m$. Jadi, c adalah rainbow 8-coloring. Karena c adalah rainbow 8-coloring, ini menunjukkan bahwa $rc(Amal\{Tr_4, v\}_m) \leq 8$. Dengan demikian, $rc(Amal\{Tr_4, v\}_m) = 8$.

Contoh 3.2. Gambar 1 menunjukkan bahwa graf $Amal\{Tr_4, v\}_3$ adalah graf rainbow connected terhadap Rainbow 8-coloring, dimana $rc(Amal\{Tr_4, v\}_3) = 8$.



Gambar 1. Rainbow 8-coloring pada graf $Amal\{Tr_4, v\}_3$.

4. Kesimpulan

Pada makalah ini telah diperoleh bilangan rainbow connection dari graf amlgamasi tangga segitiga diperumum homogen $Amal\{Tr_4, v\}_m$ untuk $m \geq 2$, yaitu

$$rc(Amal\{Tr_4, v\}_m) = 8.$$

5. Ucapan Terima kasih

Penulis mengucapkan terima kasih kepada Dr. Des Welyyanti, Riri Lestari M.Si, dan Dr. Effendi selaku tim penguji dalam penelitian makalah ini.

Daftar Pustaka

- [1] Bondy, J.A. dan U.S.R. Murty. 2000. *Graph Theory with Applications*. Elsevier Science Publishing Co., Inc., New York City.
- [2] Carlson, K. 2006. Generalized Books and C_m -snakes are Prime Graphs, Ars Combin. 80: 215 221
- [3] Chartrand, G., G. L. Johns, K. A. McKeon, dan P. Zhang. 2006. Rainbow Connection in Graph, *Mathematica Bohemica* **15**: 85 89
- [4] Fitriani, D. dan A. N. M. Salman. 2016. Rainbow Connection Number of Amalgamation of Some Graphs, *AKCE International Journal of Graphs and Combinatorics* 13: 90 99).
- [5] Li, X., Y. Shi dan Y. Sun. 2010. Rainbow Connection in 3-connected Graphs, Arxiv preprint arXiv:1010.6131v1 [math.CO].
- [6] Sy, Syafrizal, G. H. Medika, dan L. Yulianti. 2013. The Rainbow Connection Number of Fan and Sun, *Applied Mathematical Sciences* 7: 3155 – 3160
- [7] Yulianti, L., N. Narwen dan S. Fitrianda. On the Rainbow Connection Number and Strong Rainbow Connection Number of Generalized Triangle Ladder Graph, *submitted*.