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Abstract. Inspired by the notions of the U-exact sequence introduced by Davvaz
and Parnian-Garamaleky in 1999, and of the chain U-complex introduced by Davvaz and
Shabani-Solt in 2002, Mahatma and Muchtadi-Alamsyah in 2017 developed the concept
of the U-projective resolution and the U-extension module, which are the generaliza-
tions of the concept of the projective resolution and the concept of extension module,
respectively. It is already known that every element of a first extension module can be
identified as a short exact sequence. To the simple, there is a relation between the first
extension module and the short exact sequence. It is proper to expect the relation to be
provided in the U-version. In this paper, we aim to construct a one-one correspondence
between the first U-extension module and the set consisting of equivalence classes of
short U-exact sequence.
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1. Motivation

In [1] Davvaz and Shabani-Solt introduced the notion of the chain U-complex which
generalizes the concept of the chain complex. The main idea was by replacing the
kernel of every homomorphism in the sequence with the inverse image of a possibly
nonzero submodule. For more details, a sequence of modules and module homomor-
phisms

dp+2 dp+1 dp dp—l
. Cp+1 Op — Cp_l —_—

is called a chain U-complex if, for every k € Z, Uy C Im(dgy1) C d,;l(Uk_l)
where Uy, is submodule of Cy, for every k € Z. By this definition, the ordinary chain
complex now can be regarded as a chain U-complex with U, = 0 for all k € Z. As
an example of chain U-complex, consider the sequence
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A%zi%zizazmsm
1 0 T 1 0
47, 37 27, 27, 67,

where the arrow "mZ % nZ” denotes the map z — kx for every x € mZ. The
objects written in the bottom row are the submodule Ugs.

As the chain U-complex was defined, we can consider a modified concept of
exactness of a sequence by replacing the subset relation Im(dg4+1) C d;l(Uk_l)
with equality for all k& € Z. In fact, Davvaz and Parnian-Garamaleky [2] has in-
troduced in advance the notion of U-exact sequences before the chain U-complex
was. Nevertheless, the definition does not yet contain the conditions necessary for
a U-exact sequences to be seen as a special case of chain U-complex, for it does not
require the submodule Uy to be contained in Im(dy41) for every k € Z. However,
experience shows that there are more advantages when a U-exact sequences is also
a chain U-complex.

Projective resolution is a kind of exact sequence that is used widely in repre-
sentation theory. As the concept of exact sequences was generalized, Mahatma and
Muchtadi-Alamsyah [3] proposed a method to construct the U-projective resolu-
tion as the generalization of the projective resolution. Furthermore, they continued
in the same article with a method to induce the k-th U-extension module form a
U-projective resolution for all k € N, as the projective resolution does to the k-th
extension module for all k£ € N.

We assume throughout this paper that R is commutative algebra. It is known
that for any R-modules M and N there exists one-one correspondence between the
first extension R-module Ext'(M, N) and the set e(M, N) consists of all equivalence
classes of short exact sequence of the form 0 - N — E — M — 0 (see Chapter
7 of [4]). By this result, we can define the R-module structure for e(M, N). The
goal of this paper is to investigate the analogous result in the U version where U is
nonzero submodule of M.

2. The U-Extension

Given R-modules M and N, the short exact sequence 0 — N i> EL M > 0isalso
known as the extension of N by M. We start this paper with the notion generalizing
the concept of the extension by replacing the property that Im(f) = ker(g) with
Im(f) = g~ *(U) where U is nonzero submodule of M. This concept would require
that the module N should be large enough so that it can be mapped onto U.

Let M and N be R-modules and U be a submodule of M. The sequence 0 —
N L E % M - 0 such that f is one-one, g is onto, and f(N) = g~ (U) is called
the U-extension of N by M. We shall also call such sequence as a short U-exact
sequence.

We restrict the discussion in this paper only for the module N, which is direct
sum of U, and only for the short U-exact sequence 0 — N L E % M — 0 with
property that if N = U @ V then f(V) = ker(g) and gf(u) = u for every u € U.
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Therefore, every short U-exact sequence throughout this paper will be assumed to
be of that form. Notice that if we allow the submodule U to be 0, then the case
U = 0 gives us exactly the ordinary extension of N by M.

Let E(M[U], N) denotes the set of all U-extension of N by M. Let E : 0 —

N L E % M - 0be an element of E(M[U],N). A short U-exact sequence

F:05NSFS M —0m E(M[U], N) is said to be equivalent to E, denoted
by E ~ F, if there exists a morphism ¢ : E — F such that ¢’0 = g and f/ = §f,
that is if the diagram

0N L E S Moo

1118 L1 (2.1)
0= NI F LMoo

commutes. It is easy to verify that § is an isomorphism and hence ”~” is an equi-
valence relation in ‘E(M[U], N). For every E € E(M[U], N), the class of all short
U-exact sequence equivalent to E will be denoted by [E]. Thus, the set E(M[U], N)
partitioned by ”~" will consist of all classes [E] where E € E(M[U], N). We denote
those set by e(m[U], N). Thus,

e(M[U],N) = E(M[U],N)/ ~={[E]|E € E(M[U],N)}.

3. The U-Projective Resolution and the U-Extension Module

Let M be R-module, and U be a nonzero submodule of M. Consider the sequence
Py 20, M — 0 where Py is projective. Let P; be a projective module such that
the sequence P, Ly P %y M - 0 is U-exact at Py, that is Tm(dy) = dy (V).
Set Up := dy '(U) and let P; be a projective module such that the sequence Py L,
P L Py is Up-exact at Pp, or Im(ds) = dfl(Uo). Set U; = dfl(ker(do)) and
let P3 be a projective module such that the sequence Pj LN P LEN Py is U;-
exact at Py, or Im(d3) = dy *(U;). Continue the process by setting the submodule

Uy, == d;; " (ker(dy—1)) and choose the projective module Py such that the sequence

d X . _
LAY dit1 Py, is Ug-exact at Pyyq, or Im(djy2) = dk-&l-l(Uk)'

The infinite sequence - - - LN Py LN P, Do, A 5 0 obtained from the process
above is called the U-projective resoultion of M, denoted by P: P, (Us,) LN M(U).
From the construction above, it seems that the sequence obtained depends on the
choice of the module Pys. Nevertheless, in [3] Mahatma and Muchtadi-Alamsyah
showed that the U-projective resolution is unique op to the so-called (U,U)-
homotopy, that is if P: P,(U,) LN M(U) and Q: P,(U)) Lo, M(U) both are
U-projective resolution of M then there exist chain (U,U’)-map f : P — Q and
chain (U’,U)-map g: Q—P such that gf ~ 1p and fg ~ 1y (see also [1] for
detail of the map between two U-complexes). Now notice that, in a U-projective
resolution of M, since Im(d;) = dy*(U) = Uy then we may choose P, := P

Prio

and set do := 1p. Hence every U-projective resolution of M is of the form

d 1p d d
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For the example of the U-projective resolution, let us consider the case when the
algebra R is hereditary. Here we consider two cases: when module M is projective
and when it is not. According to the method given in the beginning of this section,
if M is projective, then the U-projective resolution of M will be of the form

0USUL ML M=o

T 1
u U

while if M is not projective, then the U-projective resolution of M will be of the
form

0 ker(d) > d2(U) Hd () P LMo
T T
U

4
ker(d) d=1(U)

Recall that the objects written in the bottom row denote the submodule Uys.
Here, when the Uy, is not written, we mean that Uy = 0. The detail of these con-
structions can be found in [5].

Let P: P, 2% M(U) be the U-projective resolution of M. If P, # 0 and P; =0
for all i > n then we say that the length of P is n. Hence, if R is hereditary, we
have that the U-projective resolution length is either 2 or 3. Moreover, in [5] Baur,
Mahatma, and Muchtadi-Alamsyah showed that an algebra R is hereditary if and
only if, for U # 0, every U-projective resolution of an R-module has length of either
2 or 3.

Given an R-module M, a nonzero submodule U of M, and U-projective res-
olution of M P:P,(U,) LN M(U), let (Pps) be the sequence - -- B, py &2
P LN Py — 0 obtained by removing M from P. Given an R-module N, ap-

TN
ply the functor Hom(_, N) to (Pjs) to obtain the sequence 0 — Hom(Py, N) S

N

Hom(Py, N) E—) -+, where d denotes the map Hom(dy, N) for every k € N. Now,
for every k € N, define the submodules A{CV = {adg_1di|a : Im(dk—1) — N and
z = (dy,,) - (AL ) of Hom(Py, N). Note first that, for every k € N, a morphism
z € Hom(Py, N) is in Z} if and only if there exists a morphism « : Im(dx) — N
such that (iliv+1(z) = zdp4+1 = addg41. Next, for every k € N define the submodule
BN = {udy + A p—1,i)lpt: Po—1 — N, A : Ug—2 — N} where d(j,_1 1) is the mor-
phism di_1dy regarded as single morphism. Finally, for every k € N we define the
k-th U-extension module of N by M by Ext*(M[U],N) := Z} /BN .

From the construction above, the module obtained depends on the choice of the
U-projective resolution used as the basic material. Nevertheless, in [3] Mahatma
and Muchtadi-Alamsyah showed that the k-th U-extension module is unique up to
isomorphism for every k£ € N.
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4. The First U- Extension Module

Let M be R-module, and U be a nonzero submodule of M. Given any R-module
X, we have seen that, for every k € N, the construction of Ezt®(M[U], X) involves
many steps, that make the structure of the module obtained seems so complicated.
We can describe the module Ext!'(M[U], X) very simply.

To do so, recall first that, in the U-projective resolution of M, P, = P; and ds =
1p,. Hence the module Z{¥ and BY¥ can be simplified to Z{* = {ad;|a : Im(d;) —
X} and B = {ud;|p : Py — X}, respectively. Thus the module Ext!(M[U, X]) =
Z{X | BiX consists of all classes [z] of morphisms in Hom(P;, X) whose form ad; where
a : Im(d;) — X, where two classes [21] and [z2] in Ext!(M[U], X) are considered
to be the same if and only if z; — z5 whose form pud; where p : Pp — X. As a
consequence, Ext!(M[U], X) = 0 if and only if every morphism « : Im(d;) — X
can be extended into o’ : Py — X. This could happen when Im(d;) = dy*(U)
is a direct summand of Py. Especially, we have that Ext!(M[M], X) = 0 for any
R-module, since if U = M then Im(d;) = dy*(U) = dy* (M) = P,.

5. Construction of the Correspondence

Suppose given an R-module M, nonzero submodule U of M, and an R-module
N =U@a@V. For every E € E(M[U], N), we will identify the class [E] € e(M[U], N)
by an element [2g] € Ext!(M[U], V) and vice versa.

Consider the sequence Pj G, Py o, Mo 0, where P;s are projective and
Im(d;) = dy ' (U). Let E: 0 — N L, B % M - 0 be an element in E(M[U], N).
Consider the diagram

P py Yoy a0

11
0N L E %S Moo

Note that since g is surjective and Fj is projective, then there exists a morphism
h : Py — F satisfying gh = dy. Let d(0,1) be the composition dod; regarded as
a single morphism from P to U. Consider that hdy — fd (1) is a morphism from
P, to E satisfying g (hd1 — fd(oyl)) = dody — gfd,1) = 0 since gf|y = 1y. Hence,
Im(hdy — fd,1y) C ker(g) = f(V), and since P; is projective, then there exists a
morphism 2 : P — V satisfying fz = hdy — fdg,1)-

Define the morphism « : dy(P1) = V by ad;(p) := z(p) for every p € P;. Notice
that if di(p) = 0 then z(p) = 0 and hence « is well-defined. Since z = ad; then
zezy.

Now suppose that k' : Py — FE is another morphism satisfying gh’ = dy. Let
2 € Z{ satisfy fz/ = W'dy — fdo,). Since g(h — h') = 0 then Im(h — ') C
ker(g) = f(V). Since Py is projective, then there exists a morphism p: Py — V
satisfying fu = h — h'. Thus we have f(z — 2’) = (h — h')d; = fudy, which implies
z — 2 = pdy € BY. Therefore [2] = [/] in Ext!(M[U], V).

The paragraph above shows how to construct a map from E(M[U],N) to
Ext!(M[U],V). For this map let us denote the image of E by zg. Now sup-
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pose that Fe [E]. Let § : E — F be the isomorphism that makes the Dia-
gram 2.1 commutes. Now, to obtain the morphism zr € Z} which represents
the image of F, we may set hgp := d0h and choose zg as the morphism satisfy-
ing f'zr = hpd1 — f'd,1) or 6 fzp = 0hgdy — 0 fd(o,1). Since § is an isomorphism,
then we get fzp = hgdy — fd(o,1) = fzg which implies zp = 2g.

We have just constructed a map ¢ : e(M[U],N) — Ext'(M[U],V) where
©([E]) = [zg] for every [E] € e(m[U],N). Our goal is to show that ¢ is a one-
one correspondence.

Theorem 5.1. The map ¢ is onto.

Proof. Suppose that [z] € Ext'(M[U],V). Define the submodule I :=
{(do,1)(z) ® 2(x)) ® di(—x)|x € P} of N @& Py and the module E := (N & Py)/I.
Remember that every n € N can be written uniquely as ny @ ny where ny € U
and n, € V. Create a sequence N L B % M where f(n) := (n®0)+ I for
every n € N and g((a @ b) + I) := ay + do(b) for every (a ®b) + I € E. To show
that the morphism ¢ is well-defined, notice that if a & b € I then there exists an
x € Py such that o = d1y(z) © z(x) and b = di(—x). Since Im(z) C V then we
have ay = d(,1y(x) and hence g((a @ b) + I) = d(o,1)(z) + dod1(—x) = 0. So g is
well-defined. Furthermore, since dj is onto then g is onto.

Now, if f(n) = 0 then n @ 0 € I. Hence, there exists an « € P; such that
n = d,1)(z) ® z(x) and 0 = dy(—x). Since z € Z}" then z = ad; for a morphism
a:dy(P1) = V. Therefore, n = 0 ® 0 and hence f is one-one.

Next, notice that for every n € N, gf(n) = g((n®0)+1I) = ny € U.
Hence Im(gf) € U and so Im(f) € g~ }(U). Now, if (a ®b) +1 € g~*(I) then
g((a®b)+1I) = ay + do(b) € U. Since a, € U then we have do(b) € U and so
b€ dy'(U) =Tm(dy). Let b= dy(p) where p € P,. We see that

(a®b)+1=(aDdi(p)+1
= (a+ (do1) () @ 2(p) ©0) +1
= f(a+ (dwo1(p) ® 2(p)))
€ f(N).
Then g~ (U) C Im(f). Hence we have Im(f) = g1 (U).
Next, if v € V then vy = 0 and hence gf(v) = g ((v®0)+1) = 0+ do(0) =
0. Therefore, f(V) C ker(g). Now suppose that (a @ b) + I € ker(g). Since
g((a@b)+ 1) = ay + do(b) = 0 then dy(b) = —ay € U. Hence b € dy* = Tm(d;).
Let b = dy(x) where x € P;. Then

(a®b)+1=((—do(z)®ay)®di(x))+1
=((0® (ay +2(x)))®0)+ I
= f(0® (av + 2(x)))
€ f(V).
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Hence ker(g) C f(V) and we have f(V) = ker(g).

Finally, if u € U then uy = w and hence gf(u) = g (u ® 0) + I) = u+do(0) = u.
We have just shown that the sequence E: 0 — N Lg% v 0 satisfies all
criterions in E(M[U], N). Thus, E€ ‘E(M[U], N). We will show that ¢([E]) = [2].

Define the morphism i : Py — E by h(q) := (0@ q) + I for every ¢ € Py. We see
that for every g € Py, gh(q) = g((0® q) + I) = do(q). Hence gh = dy. Next, notice
that for every p € Py,

hdy (p) = (0@ di(p)) + 1
= ((d(o,1)(p) ® 2(p)) ®0) + 1
= [ (d,1)(p) @ 2(p))
= fdo,1)(p) + f2(p)-
The equation above gives us fz = hdy — fd(,1). Hence [2] is the map of the class
[E] € e(M[U], N) by ¢. thus, [z] has a pre-image in e(M[U],N) by . Since [2] is
arbitrary then ¢ is onto. O

To show that ¢ is one-one we will show that every element in Ext!(M[U],V)
has unique pre-image in e(m[U], N) by .

Theorem 5.2. For every [z] € Ext'(M[U], V), the pre-image of [2] by ¢ is unique

Proof. Given z € Ext'(M[U],V), suppose that E € E(M[U], N) is the U-exact

sequence constructed using the method given in the proof of Theorem 5.1. Thus,

[2] = [2E]. Let F: 0 - N Sy F 9 M 5 0 be an element in E(M[U],N) with

[2r] = [2E]. Our goal is to show that [E] = [F], that is there exists a morphism

0 : E — F which makes the Diagram 2.1 commutes, that is ¢’6 = g and f' =4 f.
Consider the diagram

PP P o0

L2 4n

o N L r s

with g'h/ = dy and f'2" = Wdy — f'd(o1). Since [zp] = [2g] then 2/ — z € BY
and hence there exists a morphism p : Py — V such that 2/ = z + udy. Let us
define the morphism 6 : E — F by 6 (e ® b) + I) := f'(a) + (K’ — f'1)(b) for every
(a ®b) + 1 € E. Notice that if (a ©b) +1 = I then a = d(g,1)(z) © 2(z) and
b= dy(—z) for an x € P;. Consequently,

5 ((a@b)+1) = f' (do)(2) @ 2(x) + (b = f p)di(~=)
= [y (@) + f2(x) + (2" = 2)(=)
= fla(x) = {12 () + f'(' = 2)(2)
=0.
Hence, ¢ is well-defined.

Next, note that for every a € N, ¢ f'(a) = ¢ f'(ay ® av) = ¢ f'(ay ®0) +
9 (0®ay)=ay +0=ay. Hence, for every (a ®b) + I € E we have
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g'o((a®b)+1I)=g" (f'(a) + (M — f'u) (b))
=g'f'(a) +g'h'(b) — g'f'1u(b)
= ay +do(b)
=g((a®b)+1)

where the third row holds since Im(p) € V and f/(V) C ker(g ) Hence g (5 =g.
Next, for every n € N, we have § f(n) = 6((n@®0)+1) = f'(n)+(h' — f'1)(0) = f'(n).
Hence, §f = f’. We have shown that [E] = [F]. O

6. Result and Discussion

We have shown that given any R-module M and nonzero submodule U of M, if
N = U @V then there exists one-one correspondence between the set e(M[U], N)
of all equivalence classes in ‘E(M[U], N) with the module Ext' (M[U], V). We have

known in Section 4 that Ext' (M[M], V) = 0. Clearly, the only M-extension of M@V

by M is given by the sequence of the form 0 - M ¢V e, Maw 2% M50

where ¢ : V — W is an isomorphism.

As we know that there exists one-one correspondence between the module
Ext¥(M, N) with the set of equivalence classes of exact sequences off the form
00—+ N—FE,— - — FEy,— FE; - M — 0, it would be interesting to investigate
whether the result in this paper could be extended for another value of k. But we
must leave a note here that the construction of U-extension module give results
that Ext?(M[U], X) = 0 for any module X. Nevertheless, we may expect that there
will be relation between the exact sequence 0 - N — FEy — E; — M — 0 and
some nonzero modules Ext*(M[U], N) with k > 2.
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