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Abstract. Inspired by the notions of the U -exact sequence introduced by Davvaz

and Parnian-Garamaleky in 1999, and of the chain U -complex introduced by Davvaz and
Shabani-Solt in 2002, Mahatma and Muchtadi-Alamsyah in 2017 developed the concept

of the U -projective resolution and the U -extension module, which are the generaliza-

tions of the concept of the projective resolution and the concept of extension module,
respectively. It is already known that every element of a first extension module can be

identified as a short exact sequence. To the simple, there is a relation between the first

extension module and the short exact sequence. It is proper to expect the relation to be
provided in the U -version. In this paper, we aim to construct a one-one correspondence
between the first U -extension module and the set consisting of equivalence classes of

short U -exact sequence.
Keywords: Chain U -complex, U -projective resolution, U -extension module

1. Motivation

In [1] Davvaz and Shabani-Solt introduced the notion of the chain U -complex which

generalizes the concept of the chain complex. The main idea was by replacing the

kernel of every homomorphism in the sequence with the inverse image of a possibly

nonzero submodule. For more details, a sequence of modules and module homomor-

phisms

· · · dp+2−−−→ Cp+1
dp+1−−−→ Cp

dp−→ Cp−1
dp−1−−−→ · · ·

is called a chain U -complex if, for every k ∈ Z, Uk ⊆ Im(dk+1) ⊆ d−1
k (Uk−1)

where Uk is submodule of Ck for every k ∈ Z. By this definition, the ordinary chain

complex now can be regarded as a chain U -complex with Uk = 0 for all k ∈ Z. As

an example of chain U -complex, consider the sequence
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· · · 4−→ 1

3
Z 3−→ 1

2
Z 2−→ Z 2−→ 2Z 3−→ 3Z 4−→ · · ·

↑ ↑ ↑ ↑ ↑
4Z 3Z 2Z 2Z 6Z

where the arrow ”mZ k−→ nZ” denotes the map x 7→ kx for every x ∈ mZ. The

objects written in the bottom row are the submodule Uks.

As the chain U -complex was defined, we can consider a modified concept of

exactness of a sequence by replacing the subset relation Im(dk+1) ⊆ d−1
k (Uk−1)

with equality for all k ∈ Z. In fact, Davvaz and Parnian-Garamaleky [2] has in-

troduced in advance the notion of U -exact sequences before the chain U -complex

was. Nevertheless, the definition does not yet contain the conditions necessary for

a U -exact sequences to be seen as a special case of chain U -complex, for it does not

require the submodule Uk to be contained in Im(dk+1) for every k ∈ Z. However,

experience shows that there are more advantages when a U -exact sequences is also

a chain U -complex.

Projective resolution is a kind of exact sequence that is used widely in repre-

sentation theory. As the concept of exact sequences was generalized, Mahatma and

Muchtadi-Alamsyah [3] proposed a method to construct the U -projective resolu-

tion as the generalization of the projective resolution. Furthermore, they continued

in the same article with a method to induce the k-th U -extension module form a

U -projective resolution for all k ∈ N, as the projective resolution does to the k-th

extension module for all k ∈ N.

We assume throughout this paper that R is commutative algebra. It is known

that for any R-modules M and N there exists one-one correspondence between the

first extension R-module Ext1(M,N) and the set e(M,N) consists of all equivalence

classes of short exact sequence of the form 0 → N → E → M → 0 (see Chapter

7 of [4]). By this result, we can define the R-module structure for e(M,N). The

goal of this paper is to investigate the analogous result in the U version where U is

nonzero submodule of M .

2. The U-Extension

Given R-modules M and N , the short exact sequence 0→ N
f−→ E

g−→M → 0 is also

known as the extension of N by M. We start this paper with the notion generalizing

the concept of the extension by replacing the property that Im(f) = ker(g) with

Im(f) = g−1(U) where U is nonzero submodule of M . This concept would require

that the module N should be large enough so that it can be mapped onto U .

Let M and N be R-modules and U be a submodule of M . The sequence 0 →
N

f−→ E
g−→ M → 0 such that f is one-one, g is onto, and f(N) = g−1(U) is called

the U -extension of N by M. We shall also call such sequence as a short U -exact

sequence.

We restrict the discussion in this paper only for the module N , which is direct

sum of U , and only for the short U -exact sequence 0 → N
f−→ E

g−→ M → 0 with

property that if N = U ⊕ V then f(V ) = ker(g) and gf(u) = u for every u ∈ U .
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Therefore, every short U -exact sequence throughout this paper will be assumed to

be of that form. Notice that if we allow the submodule U to be 0, then the case

U = 0 gives us exactly the ordinary extension of N by M .

Let E (M [U ], N) denotes the set of all U -extension of N by M . Let E : 0 →
N

f−→ E
g−→ M → 0 be an element of E (M [U ], N). A short U -exact sequence

F : 0→ N
f ′−→ F

g′−→M → 0 in E (M [U ], N) is said to be equivalent to E, denoted

by E ≈ F, if there exists a morphism δ : E → F such that g′δ = g and f ′ = δf ,

that is if the diagram

0→ N
f−→ E

g−→ M → 0

↓ 1 ↓ δ ↓ 1

0→ N
f ′−→ F

g′−→ M → 0

(2.1)

commutes. It is easy to verify that δ is an isomorphism and hence ”≈” is an equi-

valence relation in E (M [U ], N). For every E ∈ E (M [U ], N), the class of all short

U -exact sequence equivalent to E will be denoted by [E]. Thus, the set E (M [U ], N)

partitioned by ”≈” will consist of all classes [E] where E ∈ E (M [U ], N). We denote

those set by e(m[U ], N). Thus,

e(M [U ], N) = E (M [U ], N)/ ≈= {[E]|E ∈ E (M [U ], N)}.

3. The U-Projective Resolution and the U-Extension Module

Let M be R-module, and U be a nonzero submodule of M . Consider the sequence

P0
d0−→ M → 0 where P0 is projective. Let P1 be a projective module such that

the sequence P2
d1−→ P1

d0−→ M → 0 is U -exact at P0, that is Im(d1) = d−1
0 (U).

Set U0 := d−1
0 (U) and let P2 be a projective module such that the sequence P2

d2−→
P1

d1−→ P0 is U0-exact at P1, or Im(d2) = d−1
1 (U0). Set U1 := d−1

1 (ker(d0)) and

let P3 be a projective module such that the sequence P3
d3−→ P2

d2−→ P1 is U1-

exact at P2, or Im(d3) = d−1
2 (U1). Continue the process by setting the submodule

Uk := d−1
k (ker(dk−1)) and choose the projective module Pk+2 such that the sequence

Pk+2
dk+2−−−→ Pk+1

dk+1−−−→ Pk is Uk-exact at Pk+1, or Im(dk+2) = d−1
k+1(Uk).

The infinite sequence · · · d2−→ P1
d1−→ P0

d0−→ M → 0 obtained from the process

above is called the U -projective resoultion of M, denoted by P: P•(U•)
d•−→ M(U).

From the construction above, it seems that the sequence obtained depends on the

choice of the module Pks. Nevertheless, in [3] Mahatma and Muchtadi-Alamsyah

showed that the U -projective resolution is unique op to the so-called (U,U)-

homotopy, that is if P: P•(U•)
d•−→ M(U) and Q: P ′•(U

′
•)

d′•−→ M(U) both are

U -projective resolution of M then there exist chain (U,U ′)-map f : P → Q and

chain (U ′, U)-map g: Q→P such that gf ' 1P and fg ' 1Q (see also [1] for

detail of the map between two U -complexes). Now notice that, in a U -projective

resolution of M , since Im(d1) = d−1
0 (U) = U0 then we may choose P2 := P1

and set d2 := 1P1
. Hence every U -projective resolution of M is of the form

· · · d3−→ P1

1P1−−→ P1
d1−→ P0

d0−→M → 0.
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For the example of the U -projective resolution, let us consider the case when the

algebra R is hereditary. Here we consider two cases: when module M is projective

and when it is not. According to the method given in the beginning of this section,

if M is projective, then the U -projective resolution of M will be of the form

0→ U
1−→ U

1−→ M
1−→ M → 0

↑ ↑
U U

while if M is not projective, then the U -projective resolution of M will be of the

form

0→ ker(d)
1−→ d−1(U)

1−→ d−1(U)
1−→ P

d−→ M → 0.

↑ ↑ ↑
ker(d) d−1(U) U

Recall that the objects written in the bottom row denote the submodule Uks.

Here, when the Uk is not written, we mean that Uk = 0. The detail of these con-

structions can be found in [5].

Let P : P•
d•−→M(U) be the U -projective resolution of M . If Pn 6= 0 and Pi = 0

for all i > n then we say that the length of P is n. Hence, if R is hereditary, we

have that the U -projective resolution length is either 2 or 3. Moreover, in [5] Baur,

Mahatma, and Muchtadi-Alamsyah showed that an algebra R is hereditary if and

only if, for U 6= 0, every U -projective resolution of an R-module has length of either

2 or 3.

Given an R-module M , a nonzero submodule U of M , and U -projective res-

olution of M P:P•(U•)
d•−→ M(U), let (PM ) be the sequence · · · d3−→ P2

d2−→
P1

d1−→ P0 → 0 obtained by removing M from P. Given an R-module N , ap-

ply the functor Hom( , N) to (PM ) to obtain the sequence 0 → Hom(P0, N)
d̄N
1−−→

Hom(P1, N)
d̄N
2−−→ · · · , where d̄Nk denotes the map Hom(dk, N) for every k ∈ N. Now,

for every k ∈ N, define the submodules AN
k := {αdk−1dk|α : Im(dk−1) → N and

ZN
k :=

(
d̄Nk+1

)−1
(AM

k+1) of Hom(Pk, N). Note first that, for every k ∈ N, a morphism

z ∈ Hom(Pk, N) is in ZN
k if and only if there exists a morphism α : Im(dk) → N

such that d̄Nk+1(z) = zdk+1 = αdkdk+1. Next, for every k ∈ N define the submodule

BN
k := {µdk + λd(k−1,k)|µ : Pk−1 → N,λ : Uk−2 → N} where d(k−1,k) is the mor-

phism dk−1dk regarded as single morphism. Finally, for every k ∈ N we define the

k-th U-extension module of N by M by Extk(M [U ], N) := ZN
k /B

N
k .

From the construction above, the module obtained depends on the choice of the

U -projective resolution used as the basic material. Nevertheless, in [3] Mahatma

and Muchtadi-Alamsyah showed that the k-th U -extension module is unique up to

isomorphism for every k ∈ N.
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4. The First U- Extension Module

Let M be R-module, and U be a nonzero submodule of M . Given any R-module

X, we have seen that, for every k ∈ N , the construction of Extk(M [U ], X) involves

many steps, that make the structure of the module obtained seems so complicated.

We can describe the module Ext1(M [U ], X) very simply.

To do so, recall first that, in the U -projective resolution of M , P2 = P1 and d2 =

1P1 . Hence the module ZX
1 and BN

1 can be simplified to ZX
1 = {αd1|α : Im(d1) →

X} and BX
1 = {µd1|µ : P0 → X}, respectively. Thus the module Ext1(M [U,X]) =

ZX
1 /B

X
1 consists of all classes [z] of morphisms in Hom(P1, X) whose form αd1 where

α : Im(d1) → X, where two classes [z1] and [z2] in Ext1(M [U ], X) are considered

to be the same if and only if z1 − z2 whose form µd1 where µ : P0 → X. As a

consequence, Ext1(M [U ], X) = 0 if and only if every morphism α : Im(d1) → X

can be extended into α′ : P0 → X. This could happen when Im(d1) = d−1
0 (U)

is a direct summand of P0. Especially, we have that Ext1(M [M ], X) = 0 for any

R-module, since if U = M then Im(d1) = d−1
0 (U) = d−1

0 (M) = P0.

5. Construction of the Correspondence

Suppose given an R-module M , nonzero submodule U of M , and an R-module

N = U⊕V . For every E ∈ E (M [U ], N), we will identify the class [E] ∈ e(M [U ], N)

by an element [zE] ∈ Ext1(M [U ], V ) and vice versa.

Consider the sequence P1
d1−→ P0

d0−→ M → 0, where Pis are projective and

Im(d1) = d−1
0 (U). Let E: 0 → N

f−→ E
g−→ M → 0 be an element in E (M [U ], N).

Consider the diagram

P1
d1−→ P0

d0−→ M → 0

↓ 1

0→ N
f−→ E

g−→ M → 0

Note that since g is surjective and P0 is projective, then there exists a morphism

h : P0 → E satisfying gh = d0. Let d(0, 1) be the composition d0d1 regarded as

a single morphism from P1 to U . Consider that hd1 − fd(0,1) is a morphism from

P1 to E satisfying g
(
hd1 − fd(0,1)

)
= d0d1 − gfd(0,1) = 0 since gf |U = 1U . Hence,

Im(hd1 − fd(0,1)) ⊆ ker(g) = f(V ), and since P1 is projective, then there exists a

morphism z : P1 → V satisfying fz = hd1 − fd(0,1).

Define the morphism α : d1(P1)→ V by αd1(p) := z(p) for every p ∈ P1. Notice

that if d1(p) = 0 then z(p) = 0 and hence α is well-defined. Since z = αd1 then

z ∈ ZV
1 .

Now suppose that h′ : P0 → E is another morphism satisfying gh′ = d0. Let

z′ ∈ ZV
1 satisfy fz′ = h′d1 − fd(0,1). Since g(h − h′) = 0 then Im(h − h′) ⊆

ker(g) = f(V ). Since P0 is projective, then there exists a morphism µ : P0 → V

satisfying fµ = h− h′. Thus we have f(z − z′) = (h− h′)d1 = fµd1, which implies

z − z′ = µd1 ∈ BN
1 . Therefore [z] = [z′] in Ext1(M [U ], V ).

The paragraph above shows how to construct a map from E (M [U ], N) to

Ext1(M [U ], V ). For this map let us denote the image of E by zE. Now sup-
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pose that F∈ [E]. Let δ : E → F be the isomorphism that makes the Dia-

gram 2.1 commutes. Now, to obtain the morphism zF ∈ ZV
1 which represents

the image of F, we may set hF := δh and choose zF as the morphism satisfy-

ing f ′zF = hFd1 − f ′d(0,1) or δfzF = δhEd1 − δfd(0,1). Since δ is an isomorphism,

then we get fzF = hEd1 − fd(0,1) = fzE which implies zF = zE.

We have just constructed a map ϕ : e(M [U ], N) → Ext1(M [U ], V ) where

ϕ([E]) = [zE] for every [E] ∈ e(m[U ], N). Our goal is to show that ϕ is a one-

one correspondence.

Theorem 5.1. The map ϕ is onto.

Proof. Suppose that [z] ∈ Ext1(M [U ], V ). Define the submodule I :={(
d(0,1)(x)⊕ z(x)

)
⊕ d1(−x)|x ∈ P1

}
of N ⊕ P0 and the module E := (N ⊕ P0)/I.

Remember that every n ∈ N can be written uniquely as nU ⊕ nV where nU ∈ U
and nv ∈ V . Create a sequence N

f−→ E
g−→ M where f(n) := (n ⊕ 0) + I for

every n ∈ N and g((a ⊕ b) + I) := aU + d0(b) for every (a ⊕ b) + I ∈ E. To show

that the morphism g is well-defined, notice that if a ⊕ b ∈ I then there exists an

x ∈ P1 such that α = d(0,1)(x) ⊕ z(x) and b = d1(−x). Since Im(z) ⊆ V then we

have aU = d(0,1)(x) and hence g((a ⊕ b) + I) = d(0,1)(x) + d0d1(−x) = 0. So g is

well-defined. Furthermore, since d0 is onto then g is onto.

Now, if f(n) = 0 then n ⊕ 0 ∈ I. Hence, there exists an x ∈ P1 such that

n = d(0,1)(x) ⊕ z(x) and 0 = d1(−x). Since z ∈ ZV
1 then z = αd1 for a morphism

α : d1(P1)→ V . Therefore, n = 0⊕ 0 and hence f is one-one.

Next, notice that for every n ∈ N, gf(n) = g ((n⊕ 0) + I) = nU ∈ U .

Hence Im(gf) ⊆ U and so Im(f) ⊆ g−1(U). Now, if (a ⊕ b) + I ∈ g−1(I) then

g ((a⊕ b) + I) = aU + d0(b) ∈ U . Since au ∈ U then we have d0(b) ∈ U and so

b ∈ d−1
0 (U) = Im(d1). Let b = d1(p) where p ∈ P1. We see that

(a⊕ b) + I = (a⊕ d1(p)) + I

=
(
a+ (d(0,1)(p)⊕ z(p))⊕ 0

)
+ I

= f
(
a+ (d(0,1)(p)⊕ z(p))

)
∈ f(N).

Then g−1(U) ⊆ Im(f). Hence we have Im(f) = g−1(U).

Next, if v ∈ V then vU = 0 and hence gf(v) = g ((v ⊕ 0) + I) = 0 + d0(0) =

0. Therefore, f(V ) ⊆ ker(g). Now suppose that (a ⊕ b) + I ∈ ker(g). Since

g ((a⊕ b) + I) = aU + d0(b) = 0 then d0(b) = −aU ∈ U . Hence b ∈ d−1
0 = Im(d1).

Let b = d1(x) where x ∈ P1. Then

(a⊕ b) + I =
(
(−d(0,1)(x)⊕ aV )⊕ d1(x)

)
+ I

= ((0⊕ (aV + z(x)))⊕ 0) + I

= f (0⊕ (aV + z(x)))

∈ f(V ).
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Hence ker(g) ⊆ f(V ) and we have f(V ) = ker(g).

Finally, if u ∈ U then uV = u and hence gf(u) = g ((u⊕ 0) + I) = u+d0(0) = u.

We have just shown that the sequence E: 0 → N
f−→ E

g−→ M → 0 satisfies all

criterions in E (M [U ], N). Thus, E∈ E (M [U ], N). We will show that ϕ([E]) = [z].

Define the morphism h : P0 → E by h(q) := (0⊕ q) + I for every q ∈ P0. We see

that for every q ∈ P0, gh(q) = g((0⊕ q) + I) = d0(q). Hence gh = d0. Next, notice

that for every p ∈ P1,

hd1(p) = (0⊕ d1(p)) + I

=
(
(d(0,1)(p)⊕ z(p))⊕ 0

)
+ I

= f
(
d(0,1)(p)⊕ z(p)

)
= fd(0,1)(p) + fz(p).

The equation above gives us fz = hd1−fd(0,1). Hence [z] is the map of the class

[E] ∈ e(M [U ], N) by ϕ. thus, [z] has a pre-image in e(M [U ], N) by ϕ. Since [z] is

arbitrary then ϕ is onto.

To show that ϕ is one-one we will show that every element in Ext1(M [U ], V )

has unique pre-image in e(m[U ], N) by ϕ.

Theorem 5.2. For every [z] ∈ Ext1(M [U ], V ), the pre-image of [z] by ϕ is unique

Proof. Given z ∈ Ext1(M [U ], V ), suppose that E ∈ E (M [U ], N) is the U -exact

sequence constructed using the method given in the proof of Theorem 5.1. Thus,

[z] = [zE]. Let F: 0 → N
f ′−→ F

g′−→ M → 0 be an element in E (M [U ], N) with

[zF] = [zE]. Our goal is to show that [E] = [F], that is there exists a morphism

δ : E → F which makes the Diagram 2.1 commutes, that is g′δ = g and f ′ = δf .

Consider the diagram

P1
d1−→ P0

d0−→ M → 0

↓ z′ ↓ h′ ↓ 1

0→ N
f ′−→ F

g′−→ M → 0

with g′h′ = d0 and f ′z′ = h′d1 − f ′d(0,1). Since [zF] = [zE] then z′ − z ∈ BV
1

and hence there exists a morphism µ : P0 → V such that z′ = z + µd1. Let us

define the morphism δ : E → F by δ ((a⊕ b) + I) := f ′(a) + (h′ − f ′µ)(b) for every

(a ⊕ b) + I ∈ E. Notice that if (a ⊕ b) + I = I then α = d(0,1)(x) ⊕ z(x) and

b = d1(−x) for an x ∈ P1. Consequently,

δ ((a⊕ b) + I) = f ′
(
d(0,1)(x)⊕ z(x)

)
+ (h′ − f ′µ)d1(−x)

= f ′d(0,1)(x) + f ′z(x) + f ′(z′ − z)(x)

= f ′z(x)− f ′z′(x) + f ′(z′ − z)(x)

= 0.

Hence, δ is well-defined.

Next, note that for every a ∈ N, g′f ′(a) = g′f ′(aU ⊕ aV ) = g′f ′(aU ⊕ 0) +

g′f ′(0⊕ aV ) = aU + 0 = aU . Hence, for every (a⊕ b) + I ∈ E we have
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g′δ((a⊕ b) + I) = g′ (f ′(a) + (h′ − f ′µ)(b))

= g′f ′(a) + g′h′(b)− g′f ′µ(b)

= aU + d0(b)

= g((a⊕ b) + I)

where the third row holds since Im(µ) ⊆ V and f ′(V ) ⊆ ker(g′). Hence g′δ = g.

Next, for every n ∈ N , we have δf(n) = δ((n⊕0)+I) = f ′(n)+(h′−f ′µ)(0) = f ′(n).

Hence, δf = f ′. We have shown that [E] = [F].

6. Result and Discussion

We have shown that given any R-module M and nonzero submodule U of M , if

N = U ⊕ V then there exists one-one correspondence between the set e(M [U ], N)

of all equivalence classes in E (M [U ], N) with the module Ext1(M [U ], V ). We have

known in Section 4 that Ext1(M [M ], V ) = 0. Clearly, the onlyM -extension ofM⊕V
by M is given by the sequence of the form 0→M ⊕ V 1+ϕ−−−→M ⊕W 1⊕0−−→M → 0

where ϕ : V →W is an isomorphism.

As we know that there exists one-one correspondence between the module

Extk(M,N) with the set of equivalence classes of exact sequences off the form

0 → N → Ek → · · · → E2 → E1 → M → 0, it would be interesting to investigate

whether the result in this paper could be extended for another value of k. But we

must leave a note here that the construction of U -extension module give results

that Ext2(M [U ], X) = 0 for any module X. Nevertheless, we may expect that there

will be relation between the exact sequence 0 → N → E2 → E1 → M → 0 and

some nonzero modules Extk(M [U ], N) with k > 2.
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