THE FIRST \boldsymbol{U}-EXTENSION MODULE AS CLASSES OF SHORT \boldsymbol{U}-EXACT SEQUENCES

Yudi Mahatma
Program Studi S1 Matematika,
Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jalan Rawamangun Muka, Jakarta, 13220, Indonesia.
email : yudi_mahatma@unj.ac.id

Diterima 4 Agustus 2021 Direvisi 15 September 2021 Dipublikasikan 21 Oktober 2021

Abstract

Inspired by the notions of the U-exact sequence introduced by Davvaz and Parnian-Garamaleky in 1999, and of the chain U-complex introduced by Davvaz and Shabani-Solt in 2002, Mahatma and Muchtadi-Alamsyah in 2017 developed the concept of the U-projective resolution and the U-extension module, which are the generalizations of the concept of the projective resolution and the concept of extension module, respectively. It is already known that every element of a first extension module can be identified as a short exact sequence. To the simple, there is a relation between the first extension module and the short exact sequence. It is proper to expect the relation to be provided in the U-version. In this paper, we aim to construct a one-one correspondence between the first U-extension module and the set consisting of equivalence classes of short U-exact sequence. Keywords: Chain U-complex, U-projective resolution, U-extension module

1. Motivation

In [1] Davvaz and Shabani-Solt introduced the notion of the chain U-complex which generalizes the concept of the chain complex. The main idea was by replacing the kernel of every homomorphism in the sequence with the inverse image of a possibly nonzero submodule. For more details, a sequence of modules and module homomorphisms

$$
\cdots \xrightarrow{d_{p+2}} C_{p+1} \xrightarrow{d_{p+1}} C_{p} \xrightarrow{d_{p}} C_{p-1} \xrightarrow{d_{p-1}} \cdots
$$

is called a chain U-complex if, for every $k \in \mathbb{Z}, U_{k} \subseteq \operatorname{Im}\left(d_{k+1}\right) \subseteq d_{k}^{-1}\left(U_{k-1}\right)$ where U_{k} is submodule of C_{k} for every $k \in \mathbb{Z}$. By this definition, the ordinary chain complex now can be regarded as a chain U-complex with $U_{k}=0$ for all $k \in \mathbb{Z}$. As an example of chain U-complex, consider the sequence

$$
\begin{array}{ccccc}
\cdots \xrightarrow{4} \frac{1}{3} \mathbb{Z} \xrightarrow{3} & \frac{1}{2} \mathbb{Z} \xrightarrow{2} & \mathbb{Z} & \xrightarrow{2} 2 \mathbb{Z} \xrightarrow{3} 3 \mathbb{Z} \xrightarrow{4} \cdots \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
4 \mathbb{Z} & 3 \mathbb{Z} & 2 \mathbb{Z} & 2 \mathbb{Z} & 6 \mathbb{Z}
\end{array}
$$

where the arrow " $m \mathbb{Z} \xrightarrow{k} n \mathbb{Z}$ " denotes the map $x \mapsto k x$ for every $x \in m \mathbb{Z}$. The objects written in the bottom row are the submodule U_{k} s.

As the chain U-complex was defined, we can consider a modified concept of exactness of a sequence by replacing the subset relation $\operatorname{Im}\left(d_{k+1}\right) \subseteq d_{k}^{-1}\left(U_{k-1}\right)$ with equality for all $k \in \mathbb{Z}$. In fact, Davvaz and Parnian-Garamaleky [2] has introduced in advance the notion of U-exact sequences before the chain U-complex was. Nevertheless, the definition does not yet contain the conditions necessary for a U-exact sequences to be seen as a special case of chain U-complex, for it does not require the submodule U_{k} to be contained in $\operatorname{Im}\left(d_{k+1}\right)$ for every $k \in \mathbb{Z}$. However, experience shows that there are more advantages when a U-exact sequences is also a chain U-complex.

Projective resolution is a kind of exact sequence that is used widely in representation theory. As the concept of exact sequences was generalized, Mahatma and Muchtadi-Alamsyah [3] proposed a method to construct the U-projective resolution as the generalization of the projective resolution. Furthermore, they continued in the same article with a method to induce the k-th U-extension module form a U-projective resolution for all $k \in \mathbb{N}$, as the projective resolution does to the k-th extension module for all $k \in \mathbb{N}$.

We assume throughout this paper that R is commutative algebra. It is known that for any R-modules M and N there exists one-one correspondence between the first extension R-module $\operatorname{Ext}^{1}(M, N)$ and the set $e(M, N)$ consists of all equivalence classes of short exact sequence of the form $0 \rightarrow N \rightarrow E \rightarrow M \rightarrow 0$ (see Chapter 7 of [4]). By this result, we can define the R-module structure for $e(M, N)$. The goal of this paper is to investigate the analogous result in the U version where U is nonzero submodule of M.

2. The \boldsymbol{U}-Extension

Given R-modules M and N, the short exact sequence $0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0$ is also known as the extension of N by M. We start this paper with the notion generalizing the concept of the extension by replacing the property that $\operatorname{Im}(f)=\operatorname{ker}(g)$ with $\operatorname{Im}(f)=g^{-1}(U)$ where U is nonzero submodule of M. This concept would require that the module N should be large enough so that it can be mapped onto U.

Let M and N be R-modules and U be a submodule of M. The sequence $0 \rightarrow$ $N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0$ such that f is one-one, g is onto, and $f(N)=g^{-1}(U)$ is called the U-extension of N by M. We shall also call such sequence as a short U-exact sequence.

We restrict the discussion in this paper only for the module N, which is direct sum of U, and only for the short U-exact sequence $0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0$ with property that if $N=U \oplus V$ then $f(V)=\operatorname{ker}(g)$ and $g f(u)=u$ for every $u \in U$.

Therefore, every short U-exact sequence throughout this paper will be assumed to be of that form. Notice that if we allow the submodule U to be 0 , then the case $U=0$ gives us exactly the ordinary extension of N by M.

Let $\mathcal{E}(M[U], N)$ denotes the set of all U-extension of N by M. Let $\mathbf{E}: 0 \rightarrow$ $N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0$ be an element of $\mathcal{E}(M[U], N)$. A short U-exact sequence $\mathbf{F}: 0 \rightarrow N \xrightarrow{f^{\prime}} F \xrightarrow{g^{\prime}} M \rightarrow 0$ in $\mathcal{E}(M[U], N)$ is said to be equivalent to \mathbf{E}, denoted by $\mathbf{E} \approx \mathbf{F}$, if there exists a morphism $\delta: E \rightarrow F$ such that $g^{\prime} \delta=g$ and $f^{\prime}=\delta f$, that is if the diagram

$$
\begin{align*}
& 0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0 \\
& \downarrow 1 \quad \downarrow \delta \xrightarrow{\downarrow} \quad \downarrow 1 \tag{2.1}\\
& 0 \rightarrow N \xrightarrow{f^{\prime}} F \xrightarrow{g^{\prime}} M \rightarrow 0
\end{align*}
$$

commutes. It is easy to verify that δ is an isomorphism and hence " \approx " is an equivalence relation in $\mathcal{E}(M[U], N)$. For every $\mathbf{E} \in \mathscr{E}(M[U], N)$, the class of all short U-exact sequence equivalent to \mathbf{E} will be denoted by $[\mathbf{E}]$. Thus, the set $\mathcal{E}(M[U], N)$ partitioned by " \approx " will consist of all classes $[\mathbf{E}]$ where $\mathbf{E} \in \mathcal{E}(M[U], N)$. We denote those set by $e(m[U], N)$. Thus,

$$
e(M[U], N)=\mathcal{E}(M[U], N) / \approx=\{[\mathbf{E}] \mid \mathbf{E} \in \mathcal{E}(M[U], N)\} .
$$

3. The \boldsymbol{U}-Projective Resolution and the \boldsymbol{U}-Extension Module

Let M be R-module, and U be a nonzero submodule of M. Consider the sequence $P_{0} \xrightarrow{d_{0}} M \rightarrow 0$ where P_{0} is projective. Let P_{1} be a projective module such that the sequence $P_{2} \xrightarrow{d_{1}} P_{1} \xrightarrow{d_{0}} M \rightarrow 0$ is U-exact at P_{0}, that is $\operatorname{Im}\left(d_{1}\right)=d_{0}^{-1}(U)$. Set $U_{0}:=d_{0}^{-1}(U)$ and let P_{2} be a projective module such that the sequence $P_{2} \xrightarrow{d_{2}}$ $P_{1} \xrightarrow{d_{1}} P_{0}$ is U_{0}-exact at P_{1}, or $\operatorname{Im}\left(d_{2}\right)=d_{1}^{-1}\left(U_{0}\right)$. Set $U_{1}:=d_{1}^{-1}\left(\operatorname{ker}\left(d_{0}\right)\right)$ and let P_{3} be a projective module such that the sequence $P_{3} \xrightarrow{d_{3}} P_{2} \xrightarrow{d_{2}} P_{1}$ is U_{1} exact at P_{2}, or $\operatorname{Im}\left(d_{3}\right)=d_{2}^{-1}\left(U_{1}\right)$. Continue the process by setting the submodule $U_{k}:=d_{k}^{-1}\left(\operatorname{ker}\left(d_{k-1}\right)\right)$ and choose the projective module P_{k+2} such that the sequence $P_{k+2} \xrightarrow{d_{k+2}} P_{k+1} \xrightarrow{d_{k}+1} P_{k}$ is U_{k}-exact at P_{k+1}, or $\operatorname{Im}\left(d_{k+2}\right)=d_{k+1}^{-1}\left(U_{k}\right)$.

The infinite sequence $\cdots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0$ obtained from the process above is called the U-projective resoultion of M, denoted by $\mathbf{P}: P_{\bullet}\left(U_{\bullet}\right) \xrightarrow{d_{\bullet}} M(U)$. From the construction above, it seems that the sequence obtained depends on the choice of the module P_{k} s. Nevertheless, in [3] Mahatma and Muchtadi-Alamsyah showed that the U-projective resolution is unique op to the so-called (U, U) homotopy, that is if $\mathbf{P}: P_{\bullet}\left(U_{\bullet}\right) \xrightarrow{d_{\bullet}} M(U)$ and $\mathbf{Q}: P_{\bullet}^{\prime}\left(U_{\bullet}^{\prime}\right) \xrightarrow{d_{\bullet}^{\prime}} M(U)$ both are U-projective resolution of M then there exist chain $\left(U, U^{\prime}\right)$-map $\mathbf{f}: \mathbf{P} \rightarrow \mathbf{Q}$ and chain $\left(U^{\prime}, U\right)$-map g: $\mathbf{Q} \rightarrow \mathbf{P}$ such that $\mathbf{g f} \simeq 1_{P}$ and $\mathbf{f g} \simeq 1_{Q}$ (see also [1] for detail of the map between two U-complexes). Now notice that, in a U-projective resolution of M, since $\operatorname{Im}\left(d_{1}\right)=d_{0}^{-1}(U)=U_{0}$ then we may choose $P_{2}:=P_{1}$ and set $d_{2}:=1_{P_{1}}$. Hence every U-projective resolution of M is of the form $\cdots \xrightarrow{d_{3}} P_{1} \xrightarrow{1_{P_{1}}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0$.

For the example of the U-projective resolution, let us consider the case when the algebra R is hereditary. Here we consider two cases: when module M is projective and when it is not. According to the method given in the beginning of this section, if M is projective, then the U-projective resolution of M will be of the form

$$
\begin{array}{rl}
0 \rightarrow U \xrightarrow{1} U \xrightarrow{1} M \xrightarrow{1} M \rightarrow 0 \\
\uparrow & \uparrow \\
U & U
\end{array}
$$

while if M is not projective, then the U-projective resolution of M will be of the form

Recall that the objects written in the bottom row denote the submodule $U_{k} s$. Here, when the U_{k} is not written, we mean that $U_{k}=0$. The detail of these constructions can be found in [5].

Let $\mathbf{P}: P_{\bullet} \xrightarrow{d_{\bullet}} M(U)$ be the U-projective resolution of M. If $P_{n} \neq 0$ and $P_{i}=0$ for all $i>n$ then we say that the length of \mathbf{P} is n. Hence, if R is hereditary, we have that the U-projective resolution length is either 2 or 3. Moreover, in [5] Baur, Mahatma, and Muchtadi-Alamsyah showed that an algebra R is hereditary if and only if, for $U \neq 0$, every U-projective resolution of an R-module has length of either 2 or 3 .

Given an R-module M, a nonzero submodule U of M, and U-projective resolution of $M \mathbf{P}: P_{\bullet}\left(U_{\bullet}\right) \xrightarrow{d_{\bullet}} M(U)$, let $\left(\mathbf{P}_{M}\right)$ be the sequence $\cdots \xrightarrow{d_{3}} P_{2} \xrightarrow{d_{2}}$ $P_{1} \xrightarrow{d_{1}} P_{0} \rightarrow 0$ obtained by removing M from \mathbf{P}. Given an R-module N, apply the functor $\operatorname{Hom}(-, N)$ to $\left(\mathbf{P}_{M}\right)$ to obtain the sequence $0 \rightarrow \operatorname{Hom}\left(P_{0}, N\right) \xrightarrow{\bar{d}_{1}^{N}}$ $\operatorname{Hom}\left(P_{1}, N\right) \xrightarrow{\bar{d}_{2}^{N}} \cdots$, where \bar{d}_{k}^{N} denotes the map $\operatorname{Hom}\left(d_{k}, N\right)$ for every $k \in \mathbb{N}$. Now, for every $k \in \mathbb{N}$, define the submodules $A_{k}^{N}:=\left\{\alpha d_{k-1} d_{k} \mid \alpha: \operatorname{Im}\left(d_{k-1}\right) \rightarrow N\right.$ and $Z_{k}^{N}:=\left(\bar{d}_{k+1}^{N}\right)^{-1}\left(A_{k+1}^{M}\right)$ of $\operatorname{Hom}\left(P_{k}, N\right)$. Note first that, for every $k \in \mathbb{N}$, a morphism $z \in \operatorname{Hom}\left(P_{k}, N\right)$ is in Z_{k}^{N} if and only if there exists a morphism $\alpha: \operatorname{Im}\left(d_{k}\right) \rightarrow N$ such that $\bar{d}_{k+1}^{N}(z)=z d_{k+1}=\alpha d_{k} d_{k+1}$. Next, for every $k \in \mathbb{N}$ define the submodule $B_{k}^{N}:=\left\{\mu d_{k}+\lambda d_{(k-1, k)} \mid \mu: P_{k-1} \rightarrow N, \lambda: U_{k-2} \rightarrow N\right\}$ where $d_{(k-1, k)}$ is the morphism $d_{k-1} d_{k}$ regarded as single morphism. Finally, for every $k \in \mathbb{N}$ we define the k-th U-extension module of N by M by $\operatorname{Ext}^{k}(M[U], N):=Z_{k}^{N} / B_{k}^{N}$.

From the construction above, the module obtained depends on the choice of the U-projective resolution used as the basic material. Nevertheless, in [3] Mahatma and Muchtadi-Alamsyah showed that the k-th U-extension module is unique up to isomorphism for every $k \in \mathbb{N}$.

4. The First \boldsymbol{U} - Extension Module

Let M be R-module, and U be a nonzero submodule of M. Given any R-module X, we have seen that, for every $k \in N$, the construction of $E x t^{k}(M[U], X)$ involves many steps, that make the structure of the module obtained seems so complicated. We can describe the module $E x t^{1}(M[U], X)$ very simply.

To do so, recall first that, in the U-projective resolution of $M, P_{2}=P_{1}$ and $d_{2}=$ $1_{P_{1}}$. Hence the module Z_{1}^{X} and B_{1}^{N} can be simplified to $Z_{1}^{X}=\left\{\alpha d_{1} \mid \alpha: \operatorname{Im}\left(d_{1}\right) \rightarrow\right.$ $X\}$ and $B_{1}^{X}=\left\{\mu d_{1} \mid \mu: P_{0} \rightarrow X\right\}$, respectively. Thus the module $\operatorname{Ext}^{1}(M[U, X])=$ Z_{1}^{X} / B_{1}^{X} consists of all classes $[z]$ of morphisms in $\operatorname{Hom}\left(P_{1}, X\right)$ whose form αd_{1} where $\alpha: \operatorname{Im}\left(d_{1}\right) \rightarrow X$, where two classes $\left[z_{1}\right]$ and $\left[z_{2}\right]$ in $\operatorname{Ext}^{1}(M[U], X)$ are considered to be the same if and only if $z_{1}-z_{2}$ whose form μd_{1} where $\mu: P_{0} \rightarrow X$. As a consequence, $\operatorname{Ext}^{1}(M[U], X)=0$ if and only if every morphism $\alpha: \operatorname{Im}\left(d_{1}\right) \rightarrow X$ can be extended into $\alpha^{\prime}: P_{0} \rightarrow X$. This could happen when $\operatorname{Im}\left(d_{1}\right)=d_{0}^{-1}(U)$ is a direct summand of P_{0}. Especially, we have that $\operatorname{Ext}^{1}(M[M], X)=0$ for any R-module, since if $U=M$ then $\operatorname{Im}\left(d_{1}\right)=d_{0}^{-1}(U)=d_{0}^{-1}(M)=P_{0}$.

5. Construction of the Correspondence

Suppose given an R-module M, nonzero submodule U of M, and an R-module $N=U \oplus V$. For every $\mathbf{E} \in \mathscr{E}(M[U], N)$, we will identify the class $[\mathbf{E}] \in e(M[U], N)$ by an element $\left[z_{\mathbf{E}}\right] \in \operatorname{Ext}^{1}(M[U], V)$ and vice versa.

Consider the sequence $P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0$, where P_{i} s are projective and $\operatorname{Im}\left(d_{1}\right)=d_{0}^{-1}(U)$. Let $\mathbf{E}: 0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0$ be an element in $\mathcal{E}(M[U], N)$. Consider the diagram

$$
\begin{aligned}
& P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0 \\
& \downarrow 1 \\
& 0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0
\end{aligned}
$$

Note that since g is surjective and P_{0} is projective, then there exists a morphism $h: P_{0} \rightarrow E$ satisfying $g h=d_{0}$. Let $d(0,1)$ be the composition $d_{0} d_{1}$ regarded as a single morphism from P_{1} to U. Consider that $h d_{1}-f d_{(0,1)}$ is a morphism from P_{1} to E satisfying $g\left(h d_{1}-f d_{(0,1)}\right)=d_{0} d_{1}-g f d_{(0,1)}=0$ since $\left.g f\right|_{U}=1_{U}$. Hence, $\operatorname{Im}\left(h d_{1}-f d_{(0,1)}\right) \subseteq \operatorname{ker}(g)=f(V)$, and since P_{1} is projective, then there exists a morphism $z: P_{1} \rightarrow V$ satisfying $f z=h d_{1}-f d_{(0,1)}$.

Define the morphism $\alpha: d_{1}\left(P_{1}\right) \rightarrow V$ by $\alpha d_{1}(p):=z(p)$ for every $p \in P_{1}$. Notice that if $d_{1}(p)=0$ then $z(p)=0$ and hence α is well-defined. Since $z=\alpha d_{1}$ then $z \in Z_{1}^{V}$.

Now suppose that $h^{\prime}: P_{0} \rightarrow E$ is another morphism satisfying $g h^{\prime}=d_{0}$. Let $z^{\prime} \in Z_{1}^{V}$ satisfy $f z^{\prime}=h^{\prime} d_{1}-f d_{(0,1)}$. Since $g\left(h-h^{\prime}\right)=0$ then $\operatorname{Im}\left(h-h^{\prime}\right) \subseteq$ $\operatorname{ker}(g)=f(V)$. Since P_{0} is projective, then there exists a morphism $\mu: P_{0} \rightarrow V$ satisfying $f \mu=h-h^{\prime}$. Thus we have $f\left(z-z^{\prime}\right)=\left(h-h^{\prime}\right) d_{1}=f \mu d_{1}$, which implies $z-z^{\prime}=\mu d_{1} \in B_{1}^{N}$. Therefore $[z]=\left[z^{\prime}\right]$ in $\operatorname{Ext}^{1}(M[U], V)$.

The paragraph above shows how to construct a map from $\mathcal{E}(M[U], N)$ to $\operatorname{Ext}^{1}(M[U], V)$. For this map let us denote the image of \mathbf{E} by $z_{\mathbf{E}}$. Now sup-
pose that $\mathbf{F} \in[\mathbf{E}]$. Let $\delta: E \rightarrow F$ be the isomorphism that makes the Diagram 2.1 commutes. Now, to obtain the morphism $z_{\mathbf{F}} \in Z_{1}^{V}$ which represents the image of \mathbf{F}, we may set $h_{\mathbf{F}}:=\delta h$ and choose $z_{\mathbf{F}}$ as the morphism satisfy$\operatorname{ing} f^{\prime} z_{\mathbf{F}}=h_{\mathbf{F}} d_{1}-f^{\prime} d_{(0,1)}$ or $\delta f z_{\mathbf{F}}=\delta h_{\mathbf{E}} d_{1}-\delta f d_{(0,1)}$. Since δ is an isomorphism, then we get $f z_{\mathbf{F}}=h_{\mathbf{E}} d_{1}-f d_{(0,1)}=f z_{\mathbf{E}}$ which implies $z_{\mathbf{F}}=z_{\mathbf{E}}$.

We have just constructed a map $\varphi: e(M[U], N) \rightarrow \operatorname{Ext}^{1}(M[U], V)$ where $\varphi([\mathbf{E}])=\left[z_{\mathbf{E}}\right]$ for every $[\mathbf{E}] \in e(m[U], N)$. Our goal is to show that φ is a oneone correspondence.

Theorem 5.1. The map φ is onto.
Proof. Suppose that $[z] \in \operatorname{Ext}^{1}(M[U], V)$. Define the submodule $I \quad:=$ $\left\{\left(d_{(0,1)}(x) \oplus z(x)\right) \oplus d_{1}(-x) \mid x \in P_{1}\right\}$ of $N \oplus P_{0}$ and the module $E:=\left(N \oplus P_{0}\right) / I$. Remember that every $n \in N$ can be written uniquely as $n_{U} \oplus n_{V}$ where $n_{U} \in U$ and $n_{v} \in V$. Create a sequence $N \xrightarrow{f} E \xrightarrow{g} M$ where $f(n):=(n \oplus 0)+I$ for every $n \in N$ and $g((a \oplus b)+I):=a_{U}+d_{0}(b)$ for every $(a \oplus b)+I \in E$. To show that the morphism g is well-defined, notice that if $a \oplus b \in I$ then there exists an $x \in P_{1}$ such that $\alpha=d_{(0,1)}(x) \oplus z(x)$ and $b=d_{1}(-x)$. Since $\operatorname{Im}(z) \subseteq V$ then we have $a_{U}=d_{(0,1)}(x)$ and hence $g((a \oplus b)+I)=d_{(0,1)}(x)+d_{0} d_{1}(-x)=0$. So g is well-defined. Furthermore, since d_{0} is onto then g is onto.

Now, if $f(n)=0$ then $n \oplus 0 \in I$. Hence, there exists an $x \in P_{1}$ such that $n=d_{(0,1)}(x) \oplus z(x)$ and $0=d_{1}(-x)$. Since $z \in Z_{1}^{V}$ then $z=\alpha d_{1}$ for a morphism $\alpha: d_{1}\left(P_{1}\right) \rightarrow V$. Therefore, $n=0 \oplus 0$ and hence f is one-one.

Next, notice that for every $n \in N, g f(n)=g((n \oplus 0)+I)=n_{U} \in U$. Hence $\operatorname{Im}(g f) \subseteq U$ and so $\operatorname{Im}(f) \subseteq g^{-1}(U)$. Now, if $(a \oplus b)+I \in g^{-1}(I)$ then $g((a \oplus b)+I)=a_{U}+d_{0}(b) \in U$. Since $a_{u} \in U$ then we have $d_{0}(b) \in U$ and so $b \in d_{0}^{-1}(U)=\operatorname{Im}\left(d_{1}\right)$. Let $b=d_{1}(p)$ where $p \in P_{1}$. We see that

$$
\begin{aligned}
(a \oplus b)+I & =\left(a \oplus d_{1}(p)\right)+I \\
& =\left(a+\left(d_{(0,1)}(p) \oplus z(p)\right) \oplus 0\right)+I \\
& =f\left(a+\left(d_{(0,1)}(p) \oplus z(p)\right)\right) \\
& \in f(N) .
\end{aligned}
$$

Then $g^{-1}(U) \subseteq \operatorname{Im}(f)$. Hence we have $\operatorname{Im}(f)=g^{-1}(U)$.
Next, if $v \in V$ then $v_{U}=0$ and hence $g f(v)=g((v \oplus 0)+I)=0+d_{0}(0)=$ 0 . Therefore, $f(V) \subseteq \operatorname{ker}(g)$. Now suppose that $(a \oplus b)+I \in \operatorname{ker}(g)$. Since $g((a \oplus b)+I)=a_{U}+d_{0}(b)=0$ then $d_{0}(b)=-a_{U} \in U$. Hence $b \in d_{0}^{-1}=\operatorname{Im}\left(d_{1}\right)$. Let $b=d_{1}(x)$ where $x \in P_{1}$. Then

$$
\begin{aligned}
(a \oplus b)+I & =\left(\left(-d_{(0,1)}(x) \oplus a_{V}\right) \oplus d_{1}(x)\right)+I \\
& =\left(\left(0 \oplus\left(a_{V}+z(x)\right)\right) \oplus 0\right)+I \\
& =f\left(0 \oplus\left(a_{V}+z(x)\right)\right) \\
& \in f(V) .
\end{aligned}
$$

Hence $\operatorname{ker}(g) \subseteq f(V)$ and we have $f(V)=\operatorname{ker}(g)$.
Finally, if $u \in U$ then $u_{V}=u$ and hence $g f(u)=g((u \oplus 0)+I)=u+d_{0}(0)=u$.
We have just shown that the sequence $\mathbf{E}: 0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0$ satisfies all criterions in $\mathcal{E}(M[U], N)$. Thus, $\mathbf{E} \in \mathcal{E}(M[U], N)$. We will show that $\varphi([\mathbf{E}])=[z]$.

Define the morphism $h: P_{0} \rightarrow E$ by $h(q):=(0 \oplus q)+I$ for every $q \in P_{0}$. We see that for every $q \in P_{0}, g h(q)=g((0 \oplus q)+I)=d_{0}(q)$. Hence $g h=d_{0}$. Next, notice that for every $p \in P_{1}$,

$$
\begin{aligned}
h d_{1}(p) & =\left(0 \oplus d_{1}(p)\right)+I \\
& =\left(\left(d_{(0,1)}(p) \oplus z(p)\right) \oplus 0\right)+I \\
& =f\left(d_{(0,1)}(p) \oplus z(p)\right) \\
& =f d_{(0,1)}(p)+f z(p) .
\end{aligned}
$$

The equation above gives us $f z=h d_{1}-f d_{(0,1)}$. Hence $[z]$ is the map of the class $[\mathbf{E}] \in e(M[U], N)$ by φ. thus, $[z]$ has a pre-image in $e(M[U], N)$ by φ. Since $[z]$ is arbitrary then φ is onto.

To show that φ is one-one we will show that every element in $\operatorname{Ext}^{1}(M[U], V)$ has unique pre-image in $e(m[U], N)$ by φ.

Theorem 5.2. For every $[z] \in \operatorname{Ext}^{1}(M[U], V)$, the pre-image of $[z]$ by φ is unique
Proof. Given $z \in \operatorname{Ext}^{1}(M[U], V)$, suppose that $\mathbf{E} \in \mathcal{E}(M[U], N)$ is the U-exact sequence constructed using the method given in the proof of Theorem 5.1. Thus, $[z]=\left[z_{\mathbf{E}}\right]$. Let $\mathbf{F}: 0 \rightarrow N \xrightarrow{f^{\prime}} F \xrightarrow{g^{\prime}} M \rightarrow 0$ be an element in $\mathcal{E}(M[U], N)$ with $\left[z_{\mathbf{F}}\right]=\left[z_{\mathbf{E}}\right]$. Our goal is to show that $[\mathbf{E}]=[\mathbf{F}]$, that is there exists a morphism $\delta: E \rightarrow F$ which makes the Diagram 2.1 commutes, that is $g^{\prime} \delta=g$ and $f^{\prime}=\delta f$.

Consider the diagram

$$
\begin{aligned}
& P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0 \\
& \downarrow z^{\prime} \\
\downarrow h^{\prime} & \downarrow 1 \\
0 \rightarrow & N \xrightarrow{f^{\prime}} F \xrightarrow{g^{\prime}} M \rightarrow 0
\end{aligned}
$$

with $g^{\prime} h^{\prime}=d_{0}$ and $f^{\prime} z^{\prime}=h^{\prime} d_{1}-f^{\prime} d_{(0,1)}$. Since $\left[z_{\mathbf{F}}\right]=\left[z_{\mathbf{E}}\right]$ then $z^{\prime}-z \in B_{1}^{V}$ and hence there exists a morphism $\mu: P_{0} \rightarrow V$ such that $z^{\prime}=z+\mu d_{1}$. Let us define the morphism $\delta: E \rightarrow F$ by $\delta((a \oplus b)+I):=f^{\prime}(a)+\left(h^{\prime}-f^{\prime} \mu\right)(b)$ for every $(a \oplus b)+I \in E$. Notice that if $(a \oplus b)+I=I$ then $\alpha=d_{(0,1)}(x) \oplus z(x)$ and $b=d_{1}(-x)$ for an $x \in P_{1}$. Consequently,

$$
\begin{aligned}
\delta((a \oplus b)+I) & =f^{\prime}\left(d_{(0,1)}(x) \oplus z(x)\right)+\left(h^{\prime}-f^{\prime} \mu\right) d_{1}(-x) \\
& =f^{\prime} d_{(0,1)}(x)+f^{\prime} z(x)+f^{\prime}\left(z^{\prime}-z\right)(x) \\
& =f^{\prime} z(x)-f^{\prime} z^{\prime}(x)+f^{\prime}\left(z^{\prime}-z\right)(x) \\
& =0 .
\end{aligned}
$$

Hence, δ is well-defined.
Next, note that for every $a \in N, g^{\prime} f^{\prime}(a)=g^{\prime} f^{\prime}\left(a_{U} \oplus a_{V}\right)=g^{\prime} f^{\prime}\left(a_{U} \oplus 0\right)+$ $g^{\prime} f^{\prime}\left(0 \oplus a_{V}\right)=a_{U}+0=a_{U}$. Hence, for every $(a \oplus b)+I \in E$ we have

$$
\begin{aligned}
g^{\prime} \delta((a \oplus b)+I) & =g^{\prime}\left(f^{\prime}(a)+\left(h^{\prime}-f^{\prime} \mu\right)(b)\right) \\
& =g^{\prime} f^{\prime}(a)+g^{\prime} h^{\prime}(b)-g^{\prime} f^{\prime} \mu(b) \\
& =a_{U}+d_{0}(b) \\
& =g((a \oplus b)+I)
\end{aligned}
$$

where the third row holds since $\operatorname{Im}(\mu) \subseteq V$ and $f^{\prime}(V) \subseteq \operatorname{ker}\left(g^{\prime}\right)$. Hence $g^{\prime} \delta=g$. Next, for every $n \in N$, we have $\delta f(n)=\delta((n \oplus 0)+I)=f^{\prime}(n)+\left(h^{\prime}-f^{\prime} \mu\right)(0)=f^{\prime}(n)$. Hence, $\delta f=f^{\prime}$. We have shown that $[\mathbf{E}]=[\mathbf{F}]$.

6. Result and Discussion

We have shown that given any R-module M and nonzero submodule U of M, if $N=U \oplus V$ then there exists one-one correspondence between the set $e(M[U], N)$ of all equivalence classes in $\mathcal{E}(M[U], N)$ with the module $\operatorname{Ext}^{1}(M[U], V)$. We have known in Section 4 that $\operatorname{Ext}^{1}(M[M], V)=0$. Clearly, the only M-extension of $M \oplus V$ by M is given by the sequence of the form $0 \rightarrow M \oplus V \xrightarrow{1+\varphi} M \oplus W \xrightarrow{1 \oplus 0} M \rightarrow 0$ where $\varphi: V \rightarrow W$ is an isomorphism.

As we know that there exists one-one correspondence between the module $\operatorname{Ext}^{k}(M, N)$ with the set of equivalence classes of exact sequences off the form $0 \rightarrow N \rightarrow E_{k} \rightarrow \cdots \rightarrow E_{2} \rightarrow E_{1} \rightarrow M \rightarrow 0$, it would be interesting to investigate whether the result in this paper could be extended for another value of k. But we must leave a note here that the construction of U-extension module give results that $\operatorname{Ext}^{2}(M[U], X)=0$ for any module X. Nevertheless, we may expect that there will be relation between the exact sequence $0 \rightarrow N \rightarrow E_{2} \rightarrow E_{1} \rightarrow M \rightarrow 0$ and some nonzero modules $\operatorname{Ext}^{k}(M[U], N)$ with $k>2$.

7. Acknowledgement

The author wishes to thank Intan Muchtadi-Alamsyah from Bandung Institute of Technology for the discussion and suggestions in writing this article.

Daftar Pustaka

[1] Davvaz, B., Shabani-Solt, H., 2002, A generalization of homological algebra, J. Korean Math. Soc. No. 6, 39 : 891-898
[2] Davvaz, B., Parnian-Garamaleky, A., 1999, A note on exact sequences, Bull. Malaysian Math. Soc. (Second Series), 22:53-56
[3] Mahatma, Y., Muchtadi-Alamsyah, I., 2017, Construction of U-extension module, AIP Conference Proceedings, 1867: 020025-1 - 020025-9
[4] Rotman, J. J., 2009, Introduction to Homological Algebra, Edisi ke-2, Springer, New York
[5] Baur, K., Mahatma, Y., Muchtadi-Alamsyah, I., 2019, The U-projective resolution of modules over path algebras of type A_{n} and $\overline{A_{n}}$, Communications of the Korean Mathematical Society, 34:701-718

