Jurnal Matematika UNAND Vol. **10** No. **4** Hal. 553 – 560 Edisi Oktober 2021 ISSN : 2303–291X e-ISSN : 2721–9410 ©Jurusan Matematika FMIPA UNAND

THE FIRST U-EXTENSION MODULE AS CLASSES OF SHORT U-EXACT SEQUENCES

Yudi Mahatma

Program Studi S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jalan Rawamangun Muka, Jakarta, 13220, Indonesia. email : yudi_mahatma@unj.ac.id

Diterima 4 Agustus 2021 Direvisi 15 September 2021 Dipublikasikan 21 Oktober 2021

Abstract. Inspired by the notions of the U-exact sequence introduced by Davvaz and Parnian-Garamaleky in 1999, and of the chain U-complex introduced by Davvaz and Shabani-Solt in 2002, Mahatma and Muchtadi-Alamsyah in 2017 developed the concept of the U-projective resolution and the U-extension module, which are the generalizations of the concept of the projective resolution and the concept of extension module, respectively. It is already known that every element of a first extension module can be identified as a short exact sequence. To the simple, there is a relation between the first extension module and the short exact sequence. It is proper to expect the relation to be provided in the U-extension module and the set consisting of equivalence classes of short U-exact sequence.

Keywords: Chain U-complex, U-projective resolution, U-extension module

1. Motivation

In [1] Davvaz and Shabani-Solt introduced the notion of the chain U-complex which generalizes the concept of the chain complex. The main idea was by replacing the kernel of every homomorphism in the sequence with the inverse image of a possibly nonzero submodule. For more details, a sequence of modules and module homomorphisms

$$\cdots \xrightarrow{d_{p+2}} C_{p+1} \xrightarrow{d_{p+1}} C_p \xrightarrow{d_p} C_{p-1} \xrightarrow{d_{p-1}} \cdots$$

is called a *chain* U-complex if, for every $k \in \mathbb{Z}$, $U_k \subseteq \text{Im}(d_{k+1}) \subseteq d_k^{-1}(U_{k-1})$ where U_k is submodule of C_k for every $k \in \mathbb{Z}$. By this definition, the ordinary chain complex now can be regarded as a chain U-complex with $U_k = 0$ for all $k \in \mathbb{Z}$. As an example of chain U-complex, consider the sequence

where the arrow " $m\mathbb{Z} \xrightarrow{k} n\mathbb{Z}$ " denotes the map $x \mapsto kx$ for every $x \in m\mathbb{Z}$. The objects written in the bottom row are the submodule U_k s.

As the chain U-complex was defined, we can consider a modified concept of exactness of a sequence by replacing the subset relation $\operatorname{Im}(d_{k+1}) \subseteq d_k^{-1}(U_{k-1})$ with equality for all $k \in \mathbb{Z}$. In fact, Davvaz and Parnian-Garamaleky [2] has introduced in advance the notion of U-exact sequences before the chain U-complex was. Nevertheless, the definition does not yet contain the conditions necessary for a U-exact sequences to be seen as a special case of chain U-complex, for it does not require the submodule U_k to be contained in $\operatorname{Im}(d_{k+1})$ for every $k \in \mathbb{Z}$. However, experience shows that there are more advantages when a U-exact sequences is also a chain U-complex.

Projective resolution is a kind of exact sequence that is used widely in representation theory. As the concept of exact sequences was generalized, Mahatma and Muchtadi-Alamsyah [3] proposed a method to construct the U-projective resolution as the generalization of the projective resolution. Furthermore, they continued in the same article with a method to induce the k-th U-extension module form a U-projective resolution for all $k \in \mathbb{N}$, as the projective resolution does to the k-th extension module for all $k \in \mathbb{N}$.

We assume throughout this paper that R is commutative algebra. It is known that for any R-modules M and N there exists one-one correspondence between the first extension R-module $\operatorname{Ext}^1(M, N)$ and the set e(M, N) consists of all equivalence classes of short exact sequence of the form $0 \to N \to E \to M \to 0$ (see Chapter 7 of [4]). By this result, we can define the R-module structure for e(M, N). The goal of this paper is to investigate the analogous result in the U version where U is nonzero submodule of M.

2. The U-Extension

Given *R*-modules *M* and *N*, the short exact sequence $0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0$ is also known as the extension of *N* by *M*. We start this paper with the notion generalizing the concept of the extension by replacing the property that Im(f) = ker(g) with $\text{Im}(f) = g^{-1}(U)$ where *U* is nonzero submodule of *M*. This concept would require that the module *N* should be large enough so that it can be mapped onto *U*.

Let M and N be R-modules and U be a submodule of M. The sequence $0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0$ such that f is one-one, g is onto, and $f(N) = g^{-1}(U)$ is called the *U*-extension of N by M. We shall also call such sequence as a short *U*-exact sequence.

We restrict the discussion in this paper only for the module N, which is direct sum of U, and only for the short U-exact sequence $0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0$ with property that if $N = U \oplus V$ then $f(V) = \ker(g)$ and gf(u) = u for every $u \in U$. Therefore, every short U-exact sequence throughout this paper will be assumed to be of that form. Notice that if we allow the submodule U to be 0, then the case U = 0 gives us exactly the ordinary extension of N by M.

Let $\mathcal{E}(M[U], N)$ denotes the set of all U-extension of N by M. Let $\mathbf{E} : 0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0$ be an element of $\mathcal{E}(M[U], N)$. A short U-exact sequence $\mathbf{F} : 0 \to N \xrightarrow{f'} F \xrightarrow{g'} M \to 0$ in $\mathcal{E}(M[U], N)$ is said to be equivalent to \mathbf{E} , denoted by $\mathbf{E} \approx \mathbf{F}$, if there exists a morphism $\delta : E \to F$ such that $g'\delta = g$ and $f' = \delta f$, that is if the diagram

commutes. It is easy to verify that δ is an isomorphism and hence " \approx " is an equivalence relation in $\mathcal{E}(M[U], N)$. For every $\mathbf{E} \in \mathcal{E}(M[U], N)$, the class of all short U-exact sequence equivalent to \mathbf{E} will be denoted by $[\mathbf{E}]$. Thus, the set $\mathcal{E}(M[U], N)$ partitioned by " \approx " will consist of all classes $[\mathbf{E}]$ where $\mathbf{E} \in \mathcal{E}(M[U], N)$. We denote those set by e(m[U], N). Thus,

$$e(M[U], N) = \mathcal{E}(M[U], N) / \approx = \{ [\mathbf{E}] | \mathbf{E} \in \mathcal{E}(M[U], N) \}.$$

3. The U-Projective Resolution and the U-Extension Module

Let M be R-module, and U be a nonzero submodule of M. Consider the sequence $P_0 \xrightarrow{d_0} M \to 0$ where P_0 is projective. Let P_1 be a projective module such that the sequence $P_2 \xrightarrow{d_1} P_1 \xrightarrow{d_0} M \to 0$ is U-exact at P_0 , that is $\operatorname{Im}(d_1) = d_0^{-1}(U)$. Set $U_0 := d_0^{-1}(U)$ and let P_2 be a projective module such that the sequence $P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0$ is U_0 -exact at P_1 , or $\operatorname{Im}(d_2) = d_1^{-1}(U_0)$. Set $U_1 := d_1^{-1}(\ker(d_0))$ and let P_3 be a projective module such that the sequence $P_3 \xrightarrow{d_3} P_2 \xrightarrow{d_2} P_1$ is U_1 -exact at P_2 , or $\operatorname{Im}(d_3) = d_2^{-1}(U_1)$. Continue the process by setting the submodule $U_k := d_k^{-1}(\ker(d_{k-1}))$ and choose the projective module P_{k+2} such that the sequence $P_{k+2} \xrightarrow{d_{k+2}} P_{k+1} \xrightarrow{d_{k+1}} P_k$ is U_k -exact at P_{k+1} , or $\operatorname{Im}(d_{k+2}) = d_{k+1}^{-1}(U_k)$.

The infinite sequence $\cdots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$ obtained from the process above is called the *U*-projective resoultion of *M*, denoted by $\mathbf{P} \colon P_{\bullet}(U_{\bullet}) \xrightarrow{d_{\bullet}} M(U)$. From the construction above, it seems that the sequence obtained depends on the choice of the module P_k s. Nevertheless, in [3] Mahatma and Muchtadi-Alamsyah showed that the *U*-projective resolution is unique op to the so-called (U, U)homotopy, that is if $\mathbf{P} \colon P_{\bullet}(U_{\bullet}) \xrightarrow{d_{\bullet}} M(U)$ and $\mathbf{Q} \colon P'_{\bullet}(U'_{\bullet}) \xrightarrow{d'_{\bullet}} M(U)$ both are *U*-projective resolution of *M* then there exist chain (U, U')-map $\mathbf{f} \colon \mathbf{P} \to \mathbf{Q}$ and chain (U', U)-map $\mathbf{g} \colon \mathbf{Q} \to \mathbf{P}$ such that $\mathbf{g} \mathbf{f} \simeq 1_P$ and $\mathbf{f} \mathbf{g} \simeq 1_Q$ (see also [1] for detail of the map between two *U*-complexes). Now notice that, in a *U*-projective resolution of *M*, since $\operatorname{Im}(d_1) = d_0^{-1}(U) = U_0$ then we may choose $P_2 := P_1$ and set $d_2 := 1_{P_1}$. Hence every *U*-projective resolution of *M* is of the form $\cdots \xrightarrow{d_3} P_1 \xrightarrow{1_{P_1}} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$.

For the example of the U-projective resolution, let us consider the case when the algebra R is hereditary. Here we consider two cases: when module M is projective and when it is not. According to the method given in the beginning of this section, if M is projective, then the U-projective resolution of M will be of the form

while if M is not projective, then the $U\mbox{-}\mathrm{projective}$ resolution of M will be of the form

Recall that the objects written in the bottom row denote the submodule $U_k s$. Here, when the U_k is not written, we mean that $U_k = 0$. The detail of these constructions can be found in [5].

Let $\mathbf{P}: P_{\bullet} \xrightarrow{d_{\bullet}} M(U)$ be the *U*-projective resolution of *M*. If $P_n \neq 0$ and $P_i = 0$ for all i > n then we say that the length of \mathbf{P} is *n*. Hence, if *R* is hereditary, we have that the *U*-projective resolution length is either 2 or 3. Moreover, in [5] Baur, Mahatma, and Muchtadi-Alamsyah showed that an algebra *R* is hereditary if and only if, for $U \neq 0$, every *U*-projective resolution of an *R*-module has length of either 2 or 3.

Given an *R*-module *M*, a nonzero submodule *U* of *M*, and *U*-projective resolution of *M* $\mathbf{P}: P_{\bullet}(U_{\bullet}) \xrightarrow{d_{\bullet}} M(U)$, let (\mathbf{P}_{M}) be the sequence $\cdots \xrightarrow{d_{3}} P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \rightarrow 0$ obtained by removing *M* from **P**. Given an *R*-module *N*, apply the functor $\operatorname{Hom}(_, N)$ to (\mathbf{P}_{M}) to obtain the sequence $0 \rightarrow \operatorname{Hom}(P_{0}, N) \xrightarrow{\overline{d}_{1}^{N}} \operatorname{Hom}(P_{1}, N) \xrightarrow{\overline{d}_{2}^{N}} \cdots$, where \overline{d}_{k}^{N} denotes the map $\operatorname{Hom}(d_{k}, N)$ for every $k \in \mathbb{N}$. Now, for every $k \in \mathbb{N}$, define the submodules $A_{k}^{N} := \{\alpha d_{k-1}d_{k} | \alpha : \operatorname{Im}(d_{k-1}) \rightarrow N \text{ and } Z_{k}^{N} := (\overline{d}_{k+1}^{N})^{-1} (A_{k+1}^{M})$ of $\operatorname{Hom}(P_{k}, N)$. Note first that, for every $k \in \mathbb{N}$, a morphism $z \in \operatorname{Hom}(P_{k}, N)$ is in Z_{k}^{N} if and only if there exists a morphism $\alpha : \operatorname{Im}(d_{k}) \rightarrow N$ such that $\overline{d}_{k+1}^{N}(z) = zd_{k+1} = \alpha d_{k}d_{k+1}$. Next, for every $k \in \mathbb{N}$ define the submodule $B_{k}^{N} := \{\mu d_{k} + \lambda d_{(k-1,k)} | \mu : P_{k-1} \rightarrow N, \lambda : U_{k-2} \rightarrow N\}$ where $d_{(k-1,k)}$ is the morphism $d_{k-1}d_{k}$ regarded as single morphism. Finally, for every $k \in \mathbb{N}$ we define the k-th *U*-extension module of N by M by $\operatorname{Ext}^{k}(M[U], N) := Z_{k}^{N}/B_{k}^{N}$.

From the construction above, the module obtained depends on the choice of the U-projective resolution used as the basic material. Nevertheless, in [3] Mahatma and Muchtadi-Alamsyah showed that the k-th U-extension module is unique up to isomorphism for every $k \in \mathbb{N}$.

4. The First U- Extension Module

Let M be R-module, and U be a nonzero submodule of M. Given any R-module X, we have seen that, for every $k \in N$, the construction of $Ext^k(M[U], X)$ involves many steps, that make the structure of the module obtained seems so complicated. We can describe the module $Ext^1(M[U], X)$ very simply.

To do so, recall first that, in the U-projective resolution of M, $P_2 = P_1$ and $d_2 = 1_{P_1}$. Hence the module Z_1^X and B_1^N can be simplified to $Z_1^X = \{\alpha d_1 | \alpha : \operatorname{Im}(d_1) \to X\}$ and $B_1^X = \{\mu d_1 | \mu : P_0 \to X\}$, respectively. Thus the module $\operatorname{Ext}^1(M[U, X]) = Z_1^X / B_1^X$ consists of all classes [z] of morphisms in $\operatorname{Hom}(P_1, X)$ whose form αd_1 where $\alpha : \operatorname{Im}(d_1) \to X$, where two classes $[z_1]$ and $[z_2]$ in $\operatorname{Ext}^1(M[U], X)$ are considered to be the same if and only if $z_1 - z_2$ whose form μd_1 where $\mu : P_0 \to X$. As a consequence, $\operatorname{Ext}^1(M[U], X) = 0$ if and only if every morphism $\alpha : \operatorname{Im}(d_1) \to X$ can be extended into $\alpha' : P_0 \to X$. This could happen when $\operatorname{Im}(d_1) = d_0^{-1}(U)$ is a direct summand of P_0 . Especially, we have that $\operatorname{Ext}^1(M[M], X) = 0$ for any R-module, since if U = M then $\operatorname{Im}(d_1) = d_0^{-1}(M) = P_0$.

5. Construction of the Correspondence

Suppose given an *R*-module *M*, nonzero submodule *U* of *M*, and an *R*-module $N = U \oplus V$. For every $\mathbf{E} \in \mathcal{E}(M[U], N)$, we will identify the class $[\mathbf{E}] \in e(M[U], N)$ by an element $[z_{\mathbf{E}}] \in \operatorname{Ext}^{1}(M[U], V)$ and vice versa.

Consider the sequence $P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$, where P_i s are projective and $\operatorname{Im}(d_1) = d_0^{-1}(U)$. Let $\mathbf{E}: 0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0$ be an element in $\mathcal{E}(M[U], N)$. Consider the diagram

$$\begin{array}{ccc} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0 \\ & \downarrow 1 \\ 0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0 \end{array}$$

Note that since g is surjective and P_0 is projective, then there exists a morphism $h: P_0 \to E$ satisfying $gh = d_0$. Let d(0,1) be the composition d_0d_1 regarded as a single morphism from P_1 to U. Consider that $hd_1 - fd_{(0,1)}$ is a morphism from P_1 to E satisfying $g(hd_1 - fd_{(0,1)}) = d_0d_1 - gfd_{(0,1)} = 0$ since $gf|_U = 1_U$. Hence, $\operatorname{Im}(hd_1 - fd_{(0,1)}) \subseteq \ker(g) = f(V)$, and since P_1 is projective, then there exists a morphism $z: P_1 \to V$ satisfying $fz = hd_1 - fd_{(0,1)}$.

Define the morphism $\alpha : d_1(P_1) \to V$ by $\alpha d_1(p) := z(p)$ for every $p \in P_1$. Notice that if $d_1(p) = 0$ then z(p) = 0 and hence α is well-defined. Since $z = \alpha d_1$ then $z \in Z_1^V$.

Now suppose that $h': P_0 \to E$ is another morphism satisfying $gh' = d_0$. Let $z' \in Z_1^V$ satisfy $fz' = h'd_1 - fd_{(0,1)}$. Since g(h - h') = 0 then $\operatorname{Im}(h - h') \subseteq \ker(g) = f(V)$. Since P_0 is projective, then there exists a morphism $\mu: P_0 \to V$ satisfying $f\mu = h - h'$. Thus we have $f(z - z') = (h - h')d_1 = f\mu d_1$, which implies $z - z' = \mu d_1 \in B_1^N$. Therefore [z] = [z'] in $\operatorname{Ext}^1(M[U], V)$.

The paragraph above shows how to construct a map from $\mathcal{E}(M[U], N)$ to $\operatorname{Ext}^1(M[U], V)$. For this map let us denote the image of **E** by $z_{\mathbf{E}}$. Now sup-

pose that $\mathbf{F} \in [\mathbf{E}]$. Let $\delta : E \to F$ be the isomorphism that makes the Diagram 2.1 commutes. Now, to obtain the morphism $z_{\mathbf{F}} \in Z_1^V$ which represents the image of \mathbf{F} , we may set $h_{\mathbf{F}} := \delta h$ and choose $z_{\mathbf{F}}$ as the morphism satisfying $f'z_{\mathbf{F}} = h_{\mathbf{F}}d_1 - f'd_{(0,1)}$ or $\delta f z_{\mathbf{F}} = \delta h_{\mathbf{E}}d_1 - \delta f d_{(0,1)}$. Since δ is an isomorphism, then we get $fz_{\mathbf{F}} = h_{\mathbf{E}}d_1 - f d_{(0,1)} = fz_{\mathbf{E}}$ which implies $z_{\mathbf{F}} = z_{\mathbf{E}}$.

We have just constructed a map $\varphi : e(M[U], N) \to \operatorname{Ext}^1(M[U], V)$ where $\varphi([\mathbf{E}]) = [z_{\mathbf{E}}]$ for every $[\mathbf{E}] \in e(m[U], N)$. Our goal is to show that φ is a one-one correspondence.

Theorem 5.1. The map φ is onto.

Proof. Suppose that $[z] \in \operatorname{Ext}^1(M[U], V)$. Define the submodule $I := \{(d_{(0,1)}(x) \oplus z(x)) \oplus d_1(-x) | x \in P_1\}$ of $N \oplus P_0$ and the module $E := (N \oplus P_0)/I$. Remember that every $n \in N$ can be written uniquely as $n_U \oplus n_V$ where $n_U \in U$ and $n_v \in V$. Create a sequence $N \xrightarrow{f} E \xrightarrow{g} M$ where $f(n) := (n \oplus 0) + I$ for every $n \in N$ and $g((a \oplus b) + I) := a_U + d_0(b)$ for every $(a \oplus b) + I \in E$. To show that the morphism g is well-defined, notice that if $a \oplus b \in I$ then there exists an $x \in P_1$ such that $\alpha = d_{(0,1)}(x) \oplus z(x)$ and $b = d_1(-x)$. Since $\operatorname{Im}(z) \subseteq V$ then we have $a_U = d_{(0,1)}(x)$ and hence $g((a \oplus b) + I) = d_{(0,1)}(x) + d_0d_1(-x) = 0$. So g is well-defined. Furthermore, since d_0 is onto then g is onto.

Now, if f(n) = 0 then $n \oplus 0 \in I$. Hence, there exists an $x \in P_1$ such that $n = d_{(0,1)}(x) \oplus z(x)$ and $0 = d_1(-x)$. Since $z \in Z_1^V$ then $z = \alpha d_1$ for a morphism $\alpha : d_1(P_1) \to V$. Therefore, $n = 0 \oplus 0$ and hence f is one-one.

Next, notice that for every $n \in N$, $gf(n) = g((n \oplus 0) + I) = n_U \in U$. Hence $\operatorname{Im}(gf) \subseteq U$ and so $\operatorname{Im}(f) \subseteq g^{-1}(U)$. Now, if $(a \oplus b) + I \in g^{-1}(I)$ then $g((a \oplus b) + I) = a_U + d_0(b) \in U$. Since $a_u \in U$ then we have $d_0(b) \in U$ and so $b \in d_0^{-1}(U) = \operatorname{Im}(d_1)$. Let $b = d_1(p)$ where $p \in P_1$. We see that

$$(a \oplus b) + I = (a \oplus d_1(p)) + I$$

= $(a + (d_{(0,1)}(p) \oplus z(p)) \oplus 0) + I$
= $f(a + (d_{(0,1)}(p) \oplus z(p)))$
 $\in f(N).$

Then $g^{-1}(U) \subseteq \text{Im}(f)$. Hence we have $\text{Im}(f) = g^{-1}(U)$.

Next, if $v \in V$ then $v_U = 0$ and hence $gf(v) = g((v \oplus 0) + I) = 0 + d_0(0) = 0$. Therefore, $f(V) \subseteq \ker(g)$. Now suppose that $(a \oplus b) + I \in \ker(g)$. Since $g((a \oplus b) + I) = a_U + d_0(b) = 0$ then $d_0(b) = -a_U \in U$. Hence $b \in d_0^{-1} = \operatorname{Im}(d_1)$. Let $b = d_1(x)$ where $x \in P_1$. Then

$$(a \oplus b) + I = \left(\left(-d_{(0,1)}(x) \oplus a_V \right) \oplus d_1(x) \right) + I$$
$$= \left(\left(0 \oplus \left(a_V + z(x) \right) \right) \oplus 0 \right) + I$$
$$= f \left(0 \oplus \left(a_V + z(x) \right) \right)$$
$$\in f(V).$$

U-extension Module 559

Hence $\ker(g) \subseteq f(V)$ and we have $f(V) = \ker(g)$.

Finally, if $u \in U$ then $u_V = u$ and hence $gf(u) = g((u \oplus 0) + I) = u + d_0(0) = u$. We have just shown that the sequence $\mathbf{E}: 0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0$ satisfies all criterions in $\mathcal{E}(M[U], N)$. Thus, $\mathbf{E} \in \mathcal{E}(M[U], N)$. We will show that $\varphi([\mathbf{E}]) = [z]$.

Define the morphism $h: P_0 \to E$ by $h(q) := (0 \oplus q) + I$ for every $q \in P_0$. We see that for every $q \in P_0$, $gh(q) = g((0 \oplus q) + I) = d_0(q)$. Hence $gh = d_0$. Next, notice that for every $p \in P_1$,

$$hd_1(p) = (0 \oplus d_1(p)) + I$$

= $((d_{(0,1)}(p) \oplus z(p)) \oplus 0) + I$
= $f(d_{(0,1)}(p) \oplus z(p))$
= $fd_{(0,1)}(p) + fz(p).$

The equation above gives us $fz = hd_1 - fd_{(0,1)}$. Hence [z] is the map of the class $[\mathbf{E}] \in e(M[U], N)$ by φ . thus, [z] has a pre-image in e(M[U], N) by φ . Since [z] is arbitrary then φ is onto.

To show that φ is one-one we will show that every element in $\text{Ext}^1(M[U], V)$ has unique pre-image in e(m[U], N) by φ .

Theorem 5.2. For every $[z] \in Ext^1(M[U], V)$, the pre-image of [z] by φ is unique

Proof. Given $z \in \operatorname{Ext}^1(M[U], V)$, suppose that $\mathbf{E} \in \mathcal{E}(M[U], N)$ is the U-exact sequence constructed using the method given in the proof of Theorem 5.1. Thus, $[z] = [z_{\mathbf{E}}]$. Let $\mathbf{F} \colon 0 \to N \xrightarrow{f'} F \xrightarrow{g'} M \to 0$ be an element in $\mathcal{E}(M[U], N)$ with $[z_{\mathbf{F}}] = [z_{\mathbf{E}}]$. Our goal is to show that $[\mathbf{E}] = [\mathbf{F}]$, that is there exists a morphism $\delta : E \to F$ which makes the Diagram 2.1 commutes, that is $g'\delta = g$ and $f' = \delta f$. Consider the diagram

$$\begin{array}{cccc} P_1 & \xrightarrow{d_1} & P_0 & \xrightarrow{d_0} & M & \rightarrow \\ & \downarrow z' & \downarrow h' & \downarrow 1 \\ 0 \rightarrow & N & \xrightarrow{f'} & F & \xrightarrow{g'} & M \rightarrow 0 \end{array}$$

0

with $g'h' = d_0$ and $f'z' = h'd_1 - f'd_{(0,1)}$. Since $[z_{\mathbf{F}}] = [z_{\mathbf{E}}]$ then $z' - z \in B_1^V$ and hence there exists a morphism $\mu : P_0 \to V$ such that $z' = z + \mu d_1$. Let us define the morphism $\delta : E \to F$ by $\delta ((a \oplus b) + I) := f'(a) + (h' - f'\mu)(b)$ for every $(a \oplus b) + I \in E$. Notice that if $(a \oplus b) + I = I$ then $\alpha = d_{(0,1)}(x) \oplus z(x)$ and $b = d_1(-x)$ for an $x \in P_1$. Consequently,

$$\delta((a \oplus b) + I) = f'(d_{(0,1)}(x) \oplus z(x)) + (h' - f'\mu)d_1(-x)$$

= $f'd_{(0,1)}(x) + f'z(x) + f'(z'-z)(x)$
= $f'z(x) - f'z'(x) + f'(z'-z)(x)$
= 0

Hence, δ is well-defined.

Next, note that for every $a \in N$, $g'f'(a) = g'f'(a_U \oplus a_V) = g'f'(a_U \oplus 0) + g'f'(0 \oplus a_V) = a_U + 0 = a_U$. Hence, for every $(a \oplus b) + I \in E$ we have

$$g'\delta((a \oplus b) + I) = g'(f'(a) + (h' - f'\mu)(b))$$

= g'f'(a) + g'h'(b) - g'f'\mu(b)
= a_U + d_0(b)
= g((a \oplus b) + I)

where the third row holds since $\operatorname{Im}(\mu) \subseteq V$ and $f'(V) \subseteq \ker(g')$. Hence $g'\delta = g$. Next, for every $n \in N$, we have $\delta f(n) = \delta((n \oplus 0) + I) = f'(n) + (h' - f'\mu)(0) = f'(n)$. Hence, $\delta f = f'$. We have shown that $[\mathbf{E}] = [\mathbf{F}]$.

6. Result and Discussion

We have shown that given any *R*-module *M* and nonzero submodule *U* of *M*, if $N = U \oplus V$ then there exists one-one correspondence between the set e(M[U], N) of all equivalence classes in $\mathcal{E}(M[U], N)$ with the module $\operatorname{Ext}^1(M[U], V)$. We have known in Section 4 that $\operatorname{Ext}^1(M[M], V) = 0$. Clearly, the only *M*-extension of $M \oplus V$ by *M* is given by the sequence of the form $0 \to M \oplus V \xrightarrow{1+\varphi} M \oplus W \xrightarrow{1\oplus 0} M \to 0$ where $\varphi : V \to W$ is an isomorphism.

As we know that there exists one-one correspondence between the module $\operatorname{Ext}^k(M, N)$ with the set of equivalence classes of exact sequences off the form $0 \to N \to E_k \to \cdots \to E_2 \to E_1 \to M \to 0$, it would be interesting to investigate whether the result in this paper could be extended for another value of k. But we must leave a note here that the construction of U-extension module give results that $\operatorname{Ext}^2(M[U], X) = 0$ for any module X. Nevertheless, we may expect that there will be relation between the exact sequence $0 \to N \to E_2 \to E_1 \to M \to 0$ and some nonzero modules $\operatorname{Ext}^k(M[U], N)$ with k > 2.

7. Acknowledgement

The author wishes to thank Intan Muchtadi-Alamsyah from Bandung Institute of Technology for the discussion and suggestions in writing this article.

Daftar Pustaka

- Davvaz, B., Shabani-Solt, H., 2002, A generalization of homological algebra, J. Korean Math. Soc. No. 6, 39: 891 – 898
- [2] Davvaz, B., Parnian-Garamaleky, A., 1999, A note on exact sequences, Bull. Malaysian Math. Soc. (Second Series), 22: 53 – 56
- [3] Mahatma, Y., Muchtadi-Alamsyah, I., 2017, Construction of U-extension module, AIP Conference Proceedings, 1867: 020025-1 – 020025-9
- [4] Rotman, J. J., 2009, Introduction to Homological Algebra, Edisi ke-2, Springer, New York.
- [5] Baur, K., Mahatma, Y., Muchtadi-Alamsyah, I., 2019, The *U*-projective resolution of modules over path algebras of type A_n and $\overline{A_n}$, Communications of the Korean Mathematical Society, 34:701-718