### On Characteristic Polynomial of Antiadjacency Matrix of A Line Digraph

#### Abstract

#### Full Text:

PDF#### References

R. B. Bapat, Graphs and matrices, Vol. 27, Springer, 2010.

S. Budiyanto, S. Utama, S. Aminah, Eigenvalues of antiadjacency matrix of directed cyclic dumbbell graph, in: Journal of Physics: Conference Series, Vol. 1108, IOP Publishing, 2018, p. 012015.

Murni, A. E. Hadi, I. Febry, Abdussakir, Anti-adjacency and laplacian spectra of inverse graph of group of integers modulo n, in: IOP Conference Series: Materials Science and Engineering, Vol. 807, IOP Publishing, 2020, p. 012033.

B. H. Aji, K. A. Sugeng, S. Aminah, Characteristic polynomial and eigenvalues of antiadjacency matrix of directed unicyclic flower vase graph, in: Journal of Physics: Conference Series, Vol. 1722, IOP Publishing, 2021, p. 012055.

A. Deng, M. Feng, A. Kelmans, Adjacency polynomials of digraph transformations, Discrete Applied Mathematics 206 (2016) 15–38.

D. Bravo, F. Cubr ́ıa, M. Fiori, V. Trevisan, Complementarity spectrum of digraphs, Linear Algebra and its Applications 627 (2021) 24–40.

C. Dalf ́o, M. A. Fiol, M. Miller, J. Ryan, J. ˇSir ́aˇn, An algebraic approach to lifts of digraphs, Discrete Applied Mathematics 269 (2019) 68–76.

J. Bang-Jensen, G. Z. Gutin, Digraphs: theory, algorithms and applications, Springer Science & Business Media, 2008.

D. Ferrero, Introduction to interconnection network models, Publ. Mat. Urug 99 (1999) 25.

C. Balbuena, D. Ferrero, X. Marcote, I. Pelayo, Algebraic properties of a digraph and its line digraph, Journal of Interconnection Networks 4 (04) (2003) 377–393.

F. Zhang, G. Lin, When a digraph and its line digraph are connected and cospectral, Discrete Mathematics 184 (1-3) (1998) 289–295.

S. Severini, On the structure of the adjacency matrix of the line digraph of a regular digraph, Discrete Applied Mathematics 154 (12) (2006) 1763–1765.

R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge university press, 2013.

J. A. Bondy, U. S. R. Murty, Graph theory, volume 244 of, Graduate Texts in Mathematics 623 (2008).

G. Chartrand, L. Lesniak, P. Zhang, Graphs & digraphs, vol. 39 (2010).

G. Chartrand, P. Zhang, A first course in graph theory, Courier Corporation, 2013.

G. Chartrand, P. Zhang, Chromatic graph theory, Second Edition, Chapman and Hall/CRC, 2019.

M. A. Fiol, L. A. Yebra, A. De Miquel, Line digraph iterations and the (d, k) digraph problem, IEEE Transactions on Computers 100 (5) (1984) 400–403

DOI: https://doi.org/10.25077/jmu.11.1.74-81.2022

### Refbacks

- There are currently no refbacks.

Copyright (c) 2022 Jurnal Matematika UNAND

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.