THE FIRST U-EXTENSION MODULE AS CLASSES OF SHORT U-EXACT SEQUENCES

Yudi Mahatma
Program Studi S1 Matematika,
Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta,
Jalan Rawamangun Muka, Jakarta, 13220, Indonesia.
email : yudi.mahatma@unj.ac.id

Abstract. Inspired by the notions of the U-exact sequence introduced by Davvaz and Parnian-Garamaleky in 1999, and of the chain U-complex introduced by Davvaz and Shabani-Solt in 2002, Mahatma and Muchtadi-Alamsyah in 2017 developed the concept of the U-projective resolution and the U-extension module, which are the generalizations of the concept of the projective resolution and the concept of extension module, respectively. It is already known that every element of a first extension module can be identified as a short exact sequence. To the simple, there is a relation between the first extension module and the short exact sequence. It is proper to expect the relation to be provided in the U-version. In this paper, we aim to construct a one-one correspondence between the first U-extension module and the set consisting of equivalence classes of short U-exact sequence.

Keywords: Chain U-complex, U-projective resolution, U-extension module

1. Motivation

In [1] Davvaz and Shabani-Solt introduced the notion of the chain U-complex which generalizes the concept of the chain complex. The main idea was by replacing the kernel of every homomorphism in the sequence with the inverse image of a possibly nonzero submodule. For more details, a sequence of modules and module homomorphisms

$$\cdots \xrightarrow{d_{p+2}} C_{p+1} \xrightarrow{d_{p+1}} C_p \xrightarrow{d_p} C_{p-1} \xrightarrow{d_{p-1}} \cdots$$

is called a chain U-complex if, for every $k \in \mathbb{Z}$, $U_k \subseteq \text{Im}(d_{k+1}) \subseteq d_k^{-1}(U_{k-1})$ where U_k is submodule of C_k for every $k \in \mathbb{Z}$. By this definition, the ordinary chain complex now can be regarded as a chain U-complex with $U_k = 0$ for all $k \in \mathbb{Z}$. As an example of chain U-complex, consider the sequence
\[
\begin{array}{cccccccc}
\ldots & 4 & Z & 3 & \uparrow & 2 & Z & 2 & \uparrow & 3 & Z & 3 & \uparrow & \ldots
\end{array}
\]

where the arrow "\(m \mathbb{Z} \to n \mathbb{Z} \)" denotes the map \(x \mapsto kx \) for every \(x \in m \mathbb{Z} \). The objects written in the bottom row are the submodule \(U_k \).s.

As the chain \(U \)-complex was defined, we can consider a modified concept of exactness of a sequence by replacing the subset relation \(\text{Im}(d_{k+1}) \subseteq d_k(U_k) \) with equality for all \(k \in \mathbb{Z} \). In fact, Davvaz and Parnian-Garamaleky [2] has introduced in advance the notion of \(U \)-exact sequences before the chain \(U \)-complex was. Nevertheless, the definition does not yet contain the conditions necessary for a \(U \)-exact sequences to be seen as a special case of chain \(U \)-complex, for it does not require the submodule \(U_k \) to be contained in \(\text{Im}(d_k(U_{k+1})) \) for every \(k \in \mathbb{Z} \). However, experience shows that there are more advantages when a \(U \)-exact sequences is also a chain \(U \)-complex.

Projective resolution is a kind of exact sequence that is used widely in representation theory. As the concept of exact sequences was generalized, Mahatma and Muchtadi-Alansyah [3] proposed a method to construct the \(U \)-projective resolution as the generalization of the projective resolution. Furthermore, they continued in the same article with a method to induce the \(k \)-th \(U \)-extension module form a \(U \)-projective resolution for all \(k \in \mathbb{N} \), as the projective resolution does to the \(k \)-th extension module for all \(k \in \mathbb{N} \).

We assume throughout this paper that \(R \) is commutative algebra. It is known that for any \(R \)-modules \(M \) and \(N \) there exists one-one correspondence between the first extension \(R \)-module \(\text{Ext}^1(M, N) \) and the set \(e(M, N) \) consists of all equivalence classes of short exact sequence of the form \(0 \to N \to E \to M \to 0 \) (see Chapter 7 of [4]). By this result, we can define the \(R \)-module structure for \(e(M, N) \). The goal of this paper is to investigate the analogous result in the \(U \) version where \(U \) is nonzero submodule of \(M \).

2. The \(U \)-Extension

Given \(R \)-modules \(M \) and \(N \), the short exact sequence \(0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0 \) is also known as the extension of \(N \) by \(M \). We start this paper with the notion generalizing the concept of the extension by replacing the property that \(\text{Im}(f) = \ker(g) \) with \(\text{Im}(f) = g^{-1}(U) \) where \(U \) is nonzero submodule of \(M \). This concept would require that the module \(N \) should be large enough so that it can be mapped onto \(U \).

Let \(M \) and \(N \) be \(R \)-modules and \(U \) be a submodule of \(M \). The sequence \(0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0 \) such that \(f \) is one-one, \(g \) is onto, and \(f(N) = g^{-1}(U) \) is called the \(U \)-extension of \(N \) by \(M \). We shall also call such sequence as a short \(U \)-exact sequence.

We restrict the discussion in this paper only for the module \(N \), which is direct sum of \(U \), and only for the short \(U \)-exact sequence \(0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0 \) with property that if \(N = U \oplus V \) then \(f(V) = \ker(g) \) and \(gf(u) = u \) for every \(u \in U \).
Therefore, every short U-exact sequence throughout this paper will be assumed to be of that form. Notice that if we allow the submodule U to be 0, then the case $U = 0$ gives us exactly the ordinary extension of N by M.

Let $\mathcal{E}(M[U], N)$ denotes the set of all U-extension of N by M. Let $E : 0 \to N \xrightarrow{f'} E \xrightarrow{\delta} M \to 0$ be an element of $\mathcal{E}(M[U], N)$. A short U-exact sequence $F : 0 \to N \xrightarrow{f'} F \xrightarrow{\delta'} M \to 0$ in $\mathcal{E}(M[U], N)$ is said to be equivalent to E, denoted by $E \approx F$, if there exists a morphism $\delta : E \to F$ such that $g\delta = g$ and $f' = \delta f$, that is if the diagram

\[
\begin{array}{ccc}
0 & \to & N \\
\downarrow & & \downarrow \\
0 & \to & N
\end{array}
\]

commutes. It is easy to verify that δ is an isomorphism and hence "\approx" is an equivalence relation in $\mathcal{E}(M[U], N)$. For every $E \in \mathcal{E}(M[U], N)$, the class of all short U-exact sequence equivalent to E will be denoted by $[E]$. Thus, the set $\mathcal{E}(M[U], N)$ partitioned by "\approx" will consist of all classes $[E]$ where $E \in \mathcal{E}(M[U], N)$. We denote those set by $e(M[U], N)$. Thus,

\[
e(M[U], N) = \mathcal{E}(M[U], N)/\approx = \{[E] | E \in \mathcal{E}(M[U], N)\}.
\]

3. The U-Projective Resolution and the U-Extension Module

Let M be R-module, and U be a nonzero submodule of M. Consider the sequence $P_0 \xrightarrow{d_0} M \to 0$ where P_0 is projective. Let P_1 be a projective module such that the sequence $P_2 \xrightarrow{d_1} P_1 \xrightarrow{d_0} M \to 0$ is U-exact at P_0, that is $\text{Im}(d_1) = d_0^{-1}(U)$. Set $U_0 := d_0^{-1}(U)$ and let P_2 be a projective module such that the sequence $P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0$ is U_0-exact at P_1, or $\text{Im}(d_2) = d_1^{-1}(U_0)$. Set $U_1 := d_1^{-1}(\text{ker}(d_0))$ and let P_3 be a projective module such that the sequence $P_3 \xrightarrow{d_3} P_2 \xrightarrow{d_2} P_1$ is U_1-exact at P_2, or $\text{Im}(d_3) = d_2^{-1}(U_1)$. Continue the process by setting the submodule $U_k := d_k^{-1}(\text{ker}(d_{k-1}))$ and choose the projective module P_{k+2} such that the sequence $P_{k+2} \xrightarrow{d_{k+2}} P_{k+1} \xrightarrow{d_{k+1}} P_k$ is U_k-exact at P_{k+1}, or $\text{Im}(d_{k+2}) = d_{k+1}^{-1}(U_k)$.

The infinite sequence $\cdots d_2 \xrightarrow{d_1} P_1 \xrightarrow{d_0} P_0 \xrightarrow{d_0} M \to 0$ obtained from the process above is called the U-projective resolution of M, denoted by $P_\bullet(U_\bullet) \xrightarrow{d_\bullet} M(U)$. From the construction above, it seems that the sequence obtained depends on the choice of the module P_ks. Nevertheless, in [3] Mahatma and Muchtadi-Alamsyah showed that the U-projective resolution is unique up to the so-called (U, U')-homotopy, that is if $P : P_\bullet(U_\bullet) \xrightarrow{d_\bullet} M(U)$ and $Q : Q_\bullet(U'_\bullet) \xrightarrow{d'_\bullet} M(U)$ both are U-projective resolution of M then there exist chain (U, U')-map $f : P \to Q$ and chain (U', U)-map $g : Q \to P$ such that $gf \simeq 1_P$ and $fg \simeq 1_Q$ (see also [1] for detail of the map between two U-complexes). Now notice that, in a U-projective resolution of M, since $\text{Im}(d_1) = d_0^{-1}(U) = U_0$ then we may choose $P_2 := P_1$ and set $d_2 := 1_{P_1}$. Hence every U-projective resolution of M is of the form

\[
\cdots d_2 \xrightarrow{d_1} P_1 \xrightarrow{d_0} P_0 \xrightarrow{d_0} M \to 0.
\]
For the example of the U-projective resolution, let us consider the case when the algebra R is hereditary. Here we consider two cases: when module M is projective and when it is not. According to the method given in the beginning of this section, if M is projective, then the U-projective resolution of M will be of the form

$$
0 \rightarrow U \xrightarrow{1} U \xrightarrow{1} M \xrightarrow{1} M \rightarrow 0
$$

while if M is not projective, then the U-projective resolution of M will be of the form

$$
0 \rightarrow \ker(d) \xrightarrow{1} d^{-1}(U) \xrightarrow{1} d^{-1}(U) \xrightarrow{1} P \xrightarrow{d} M \rightarrow 0.
$$

Recall that the objects written in the bottom row denote the submodule U_ks. Here, when the U_k is not written, we mean that $U_k = 0$. The detail of these constructions can be found in [5].

Let $P : P_0 \xrightarrow{d_0} M(U)$ be the U-projective resolution of M. If $P_n \neq 0$ and $P_1 = 0$ for all $i > n$ then we say that the length of P is n. Hence, if R is hereditary, we have that the U-projective resolution length is either 2 or 3. Moreover, in [5] Baur, Mahatma, and Muchtadi-Alamsyah showed that an algebra R is hereditary if and only if, for $U \neq 0$, every U-projective resolution of an R-module has length of either 2 or 3.

Given an R-module M, a nonzero submodule U of M, and U-projective resolution of M $P : P_0 \xrightarrow{d_0} M(U)$, let (P_M) be the sequence $\cdots \xrightarrow{d_3} P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \rightarrow 0$ obtained by removing M from P. Given an R-module N, apply the functor $\Hom(_ , N)$ to (P_M) to obtain the sequence $0 \rightarrow \Hom(P_0, N) \xrightarrow{d_0^N} \Hom(P_1, N) \xrightarrow{d_1^N} \cdots$, where d_k^N denotes the map $\Hom(d_k, N)$ for every $k \in \mathbb{N}$. Now, for every $k \in \mathbb{N}$, define the submodules $A_k^N := \{ \alpha d_{k-1} - d_k \alpha : \text{Im}(d_{k-1}) \rightarrow N \}$ and $Z_k^N := (d_{k+1}^N)^{-1}(A_{k+1}^N)$ of $\Hom(P_k, N)$. Note first that, for every $k \in \mathbb{N}$, a morphism $z \in \Hom(P_k, N)$ is in Z_k^N if and only if there exists a morphism $\alpha : \text{Im}(d_k) \rightarrow N$ such that $d_{k+1}^N(z) = zd_{k+1} = \alpha d_k$. Next, for every $k \in \mathbb{N}$ define the submodule $B_k^N := \{ \mu d_k + \lambda d_{k-1} \mu : P_{k-1} \rightarrow N, \lambda : U_{k-2} \rightarrow N \}$ where $d_{k-1} \mu$ is the morphism $d_{k-1} d_k$ regarded as single morphism. Finally, for every $k \in \mathbb{N}$ we define the k-th U-extension module of N by M by $\Ext^k(M[U], N) := Z_k^N / B_k^N$.

From the construction above, the module obtained depends on the choice of the U-projective resolution used as the basic material. Nevertheless, in [3] Mahatma and Muchtadi-Alamsyah showed that the k-th U-extension module is unique up to isomorphism for every $k \in \mathbb{N}$.
4. The First U-Extension Module

Let M be R-module, and U be a nonzero submodule of M. Given any R-module X, we have seen that, for every $k \in \mathbb{N}$, the construction of $\text{Ext}^k(M[U], X)$ involves many steps, that make the structure of the module obtained seems so complicated. We can describe the module $\text{Ext}^1(M[U], X)$ very simply.

To do so, recall first that, in the U-projective resolution of M, $P_2 = P_1$ and $d_2 = 1_{P_1}$. Hence the module Z_1^X and B_1^N can be simplified to $Z_1^X = \{\alpha d_1 | \alpha : \text{Im}(d_1) \to X\}$ and $B_1^X = \{\mu d_1 | \mu : P_0 \to X\}$, respectively. Thus the module $\text{Ext}^1(M[U], X) = Z_1^X/B_1^X$ consists of all classes $[z]$ of morphisms in $\text{Hom}(P_1, X)$ whose form αd_1 where $\alpha : \text{Im}(d_1) \to X$, where two classes $[z_1]$ and $[z_2]$ in $\text{Ext}^1(M[U], X)$ are considered to be the same if and only if $z_1 - z_2$ whose form μd_1 where $\mu : P_0 \to X$. As a consequence, $\text{Ext}^1(M[U], X) = 0$ if and only if every morphism $\alpha : \text{Im}(d_1) \to X$ can be extended into $\alpha' : P_0 \to X$. This could happen when $\text{Im}(d_1) = d_0^{-1}(U)$ is a direct summand of P_0. Especially, we have that $\text{Ext}^1(M[M], X) = 0$ for any R-module, since if $U = M$ then $\text{Im}(d_1) = d_0^{-1}(U) = d_0^{-1}(M) = P_0$.

5. Construction of the Correspondence

Suppose given an R-module M, nonzero submodule U of M, and an R-module $N = U \oplus V$. For every $E \in \mathcal{E}(M[U], N)$, we will identify the class $[E] \in e(M[U], N)$ by an element $[z_E] \in \text{Ext}^1(M[U], V)$ and vice versa.

Consider the sequence $P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$, where P_is are projective and $\text{Im}(d_1) = d_0^{-1}(U)$. Let $E : 0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0$ be an element in $\mathcal{E}(M[U], N)$. Consider the diagram

$$
P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0
\xrightarrow{1}
0 \to N \xrightarrow{f} E \xrightarrow{g} M \to 0
$$

Note that since g is surjective and P_0 is projective, then there exists a morphism $h : P_0 \to E$ satisfying $gh = d_0$. Let $d(0, 1)$ be the composition $d_0 d_1$ regarded as a single morphism from P_1 to U. Consider that $hd_1 - fd(0,1)$ is a morphism from P_1 to E satisfying $g(hd_1 - fd(0,1)) = d_0 d_1 - gfd(0,1) = 0$ since $gf|_U = 1_U$. Hence, $\text{Im}(hd_1 - fd(0,1)) \subseteq \ker(g) \subseteq \text{ker}(f) \subseteq \text{ker}(f|_V)$, and since P_1 is projective, then there exists a morphism $z : P_1 \to V$ satisfying $f z = hd_1 - fd(0,1)$.

Define the morphism $\alpha : d_1(P_1) \to V$ by $d_1(P_0) := z(p)$ for every $p \in P_1$. Notice that if $d_1(p) = 0$ then $z(p) = 0$ and hence α is well-defined. Since $z = \alpha d_1$ then $z \in Z_1^Y$.

Now suppose that $h' : P_0 \to E$ is another morphism satisfying $gh' = d_0$. Let $z' \in Z_1^Y$ satisfy $f z' = h'd_1 - fd(0,1)$. Since $g(h - h') = 0$ then $\text{Im}(h - h') \subseteq \ker(g) \subseteq \text{ker}(f) \subseteq \text{ker}(f|_V)$. Since P_0 is projective, then there exists a morphism $\mu : P_0 \to V$ satisfying $f \mu = h - h'$. Thus we have $f(z - z') = (h - h')d_1 = f \mu d_1$, which implies $z - z' = \mu d_1 \in B_1^N$. Therefore $[z] = [z']$ in $\text{Ext}^1(M[U], V)$.

The paragraph above shows how to construct a map from $\mathcal{E}(M[U], N)$ to $\text{Ext}^1(M[U], V)$. For this map let us denote the image of E by z_E. Now sup-
pose that $F \in [E]$. Let $\delta : E \to F$ be the isomorphism that makes the Diagram 2.1 commutes. Now, to obtain the morphism $2F \in Z_1^V$ which represents the image of F, we may set $h_F := \delta h$ and choose z_F as the morphism satisfying $f'z_F = h_F d_1 - f'd_{(0,1)}$ or $\delta f z_F = \delta h d_1 - \delta f d_{(0,1)}$. Since δ is an isomorphism, then we get $f z_F = h_E d_1 - f d_{(0,1)} = f z_E$ which implies $z_F = z_E$.

We have just constructed a map $\varphi : e(M[U], N) \to \text{Ext}^1(M[U], V)$ where $\varphi([E]) = [z_E]$ for every $[E] \in e(m[U], N)$. Our goal is to show that φ is a one-one correspondence.

Theorem 5.1. The map φ is onto.

Proof. Suppose that $[z] \in \text{Ext}^1(M[U], V)$. Define the submodule $I := \{(d_{(0,1)}(x) \oplus z(x)) \oplus d_1(-x) | x \in P_1\}$ of $N \oplus P_0$ and the module $E := (N \oplus P_0)/I$. Remember that every $n \in N$ can be written uniquely as $n_U \oplus n_V$ where $n_U \in U$ and $n_v \in V$. Create a sequence $N \xrightarrow{f} E \xrightarrow{g} M$ where $f(n) := (n \oplus 0) + I$ for every $n \in N$ and $g((a \oplus b) + I) := a_U + d_0(b)$ for every $(a \oplus b) + I \in E$. To show that the morphism g is well-defined, notice that if $a \oplus b \in I$ then there exists an $x \in P_1$ such that $\alpha = d_{(0,1)}(x) \oplus z(x)$ and $b = d_1(-x)$. Since $\text{Im}(z) \subseteq V$ then we have $a_U = d_{(0,1)}(x)$ and hence $g((a \oplus b) + I) = d_{0,1}(x) + d_0d_1(-x) = 0$. So g is well-defined. Furthermore, since d_0 is onto then g is onto.

Now, if $f(n) = 0$ then $n \oplus 0 \in I$. Hence, there exists an $x \in P_1$ such that $n = d_{(0,1)}(x) \oplus z(x)$ and $0 = d_1(-x)$. Since $z \in Z_1^N$ then $z = \alpha d_1$ for a morphism $\alpha : d_1(P_1) \to V$. Therefore, $n = 0 \oplus 0$ and hence f is one-one.

Next, notice that for every $n \in N$, $g(f(n)) = g((n \oplus 0) + I) = n_U \in U$. Hence $\text{Im}(g f) \subseteq U$ and so $\text{Im}(f) \subseteq g^{-1}(U)$. Now, if $(a \oplus b) + I \in g^{-1}(I)$ then $g((a \oplus b) + I) = a_U + d_0(b) \in U$. Since $a_U \in U$ then we have $d_0(b) \in U$ and so $b \in d_0^{-1}(U) = \text{Im}(d_1)$. Let $b = d_1(p)$ where $p \in P_1$. We see that

$$(a \oplus b) + I = (a \oplus d_1(p)) + I$$

$$= (a + (d_{(0,1)}(p) \oplus z(p)) \oplus 0) + I$$

$$= f((a + (d_{(0,1)}(p) \oplus z(p))))$$

$$\in f(N).$$

Then $g^{-1}(U) \subseteq \text{Im}(f)$. Hence we have $\text{Im}(f) = g^{-1}(U)$.

Next, if $v \in V$ then $v_U = 0$ and hence $g f(v) = g((v \oplus 0) + I) = 0 + d_0(0) = 0$. Therefore, $f(V) \subseteq \text{ker}(g)$. Now suppose that $(a \oplus b) + I \in \text{ker}(g)$. Since $g((a \oplus b) + I) = a_U + d_0(b) = 0$ then $d_0(b) = -a_U \in U$. Hence $b \in d_0^{-1} = \text{Im}(d_1)$. Let $b = d_1(x)$ where $x \in P_1$. Then

$$(a \oplus b) + I = ((-d_{(0,1)}(x) \oplus a_U) \oplus d_1(x)) + I$$

$$= ((0 \oplus (a_U + z(x))) \oplus 0) + I$$

$$= f(0 \oplus (a_U + z(x)))$$

$$\in f(V).$$
Hence \(\ker(g) \subseteq f(V) \) and we have \(f(V) = \ker(g) \).

Finally, if \(u \in U \) then \(uV = u \) and hence \(gf(u) = g((u \oplus 0) + I) = u + d_0(0) = u \).

We have just shown that the sequence \(E : 0 \to N \xrightarrow{J} E \xrightarrow{g} M \to 0 \) satisfies all criterions in \(E(M[U], N) \). Thus, \(E \in \mathcal{E}(M[U], N) \). We will show that \(\varphi([E]) = [z] \).

Define the morphism \(h : P_0 \to E \) by \(h(q) := (0 \oplus q) + I \) for every \(q \in P_0 \). We see that for every \(q \in P_0 \), \(gh(q) = g((0 \oplus q) + I) = d_0(q) \). Hence \(gh = d_0 \). Next, notice that for every \(p \in P_1 \),

\[
hd_1(p) = (0 \oplus d_1(p)) + I = (\langle d_{(0,1)}(p) \oplus z(p) \rangle 0) + I = f(d_{(0,1)}(p) \oplus z(p)) = f d_{(0,1)}(p) + f z(p).
\]

The equation above gives us \(f z = h d_1 - f d_{(0,1)} \). Hence \([z] \) is the map of the class \([E] \in e(M[U], N) \) by \(\varphi \). thus, \([z] \) has a pre-image in \(e(M[U], N) \) by \(\varphi \). Since \([z] \) is arbitrary then \(\varphi \) is onto.

\(\square \)

To show that \(\varphi \) is one-one we will show that every element in \(\text{Ext}^1(M[U], V) \) has unique pre-image in \(e(m[U], N) \) by \(\varphi \).

Theorem 5.2. For every \([z] \in \text{Ext}^1(M[U], V) \), the pre-image of \([z] \) by \(\varphi \) is unique

Proof. Given \(z \in \text{Ext}^1(M[U], V) \), suppose that \(E \in \mathcal{E}(M[U], N) \) is the \(U \)-exact sequence constructed using the method given in the proof of Theorem 5.1. Thus, \([z] = [z_E] \). Let \(F : 0 \to N \xrightarrow{f'} M \to 0 \) be an element in \(\mathcal{E}(M[U], N) \) with \([z_F] = [z_E] \). Our goal is to show that \([E] = [F] \), that is there exists a morphism \(\delta : E \to F \) which makes the diagram 2.1 commutes, that is \(g' \delta = g \) and \(f' = \delta f \).

Consider the diagram

\[
\begin{array}{ccc}
P_1 & \xrightarrow{d_1} & P_0 & \xrightarrow{d_0} & M & \to & 0 \\
\downarrow z' & & \downarrow h' & & \downarrow 1 \\
0 & \to & N & \xrightarrow{f'} & M & \to & 0
\end{array}
\]

with \(g'h' = d_0 \) and \(f'z' = h'd_1 - f'd_{(0,1)} \). Since \([z_F] = [z_E] \) then \(z' - z \in B_Y \) and hence there exists a morphism \(\mu : P_0 \to V \) such that \(z' = z + \mu d_1 \). Let us define the morphism \(\delta : E \to F \) by \(\delta ((a \oplus b) + I) := f'(a) + (h' - f' \mu)(b) \) for every \((a \oplus b) + I \in E \). Notice that if \((a \oplus b) + I = I \) then \(\alpha = d_{(0,1)}(x) \oplus z(x) \) and \(b = d_1(-x) \) for an \(x \in P_1 \). Consequently,

\[
\delta ((a \oplus b) + I) = f'(d_{(0,1)}(x) \oplus z(x)) + (h' - f' \mu)d_1(-x) = f'd_{(0,1)}(x) + f'z(x) + f'(z' - z)(x) = f'z(x) - f'z'(x) + f'(z' - z)(x) = 0.
\]

Hence, \(\delta \) is well-defined.

Next, note that for every \(a \in N \), \(g'f'(a) = g'f'(a_U \oplus a_V) = g'f'(a_U \oplus 0) + g'f'(0 \oplus a_V) = a_U + 0 = a_U \). Hence, for every \((a \oplus b) + I \in E \) we have
\[g'(a \oplus b) + I = g' (f'(a) + (h' - f' \mu)(b)) \\
= g'f'(a) + g'h'(b) - g'f' \mu(b) \\
= a_U + d_0(b) \\
= g((a \oplus b) + I) \]

where the third row holds since \(\text{Im}(\mu) \subseteq V \) and \(f'(V) \subseteq \ker(g') \). Hence \(g' \delta = g \).

Next, for every \(n \in N \), we have \(\delta f(n) = \delta((n \oplus 0) + I) = f'(n) + (h' - f' \mu)(0) = f'(n) \).

Hence, \(\delta f = f' \). We have shown that \([E] = [F]\). \(\square \)

6. Result and Discussion

We have shown that given any \(R \)-module \(M \) and nonzero submodule \(U \) of \(M \), if \(N = U \oplus V \) then there exists one-one correspondence between the set \(e(M[U], N) \) of all equivalence classes in \(\mathcal{E}(M[U], N) \) with the module \(\text{Ext}^1(M[U], V) \). We have known in Section 4 that \(\text{Ext}^1(M[M], V) = 0 \). Clearly, the only \(M \)-extension of \(M \oplus V \) by \(M \) is given by the sequence of the form \(0 \rightarrow M \oplus V \xrightarrow{1+\varphi} M \oplus W \xrightarrow{1+0} M \rightarrow 0 \) where \(\varphi : V \rightarrow W \) is an isomorphism.

As we know that there exists one-one correspondence between the module \(\text{Ext}^k(M, N) \) with the set of equivalence classes of exact sequences of the form \(0 \rightarrow N \rightarrow E_2 \rightarrow E_1 \rightarrow M \rightarrow 0 \), it would be interesting to investigate whether the result in this paper could be extended for another value of \(k \). But we must leave a note here that the construction of \(U \)-extension module give results that \(\text{Ext}^2(M[U], X) = 0 \) for any module \(X \). Nevertheless, we may expect that there will be relation between the exact sequence \(0 \rightarrow N \rightarrow E_2 \rightarrow E_1 \rightarrow M \rightarrow 0 \) and some nonzero modules \(\text{Ext}^k(M[U], N) \) with \(k > 2 \).

7. Acknowledgement

The author wishes to thank Intan Muchtadi-Alamsyah from Bandung Institute of Technology for the discussion and suggestions in writing this article.

Daftar Pustaka

[5] Baur, K., Mahatma, Y., Muchtadi-Alamsyah, I., 2019, The \(U \)-projective resolution of modules over path algebras of type \(A_n \) and \(\overline{A_n} \), \textit{Communications of the Korean Mathematical Society}, 34 : 701 – 718