The Locating-chromatic Number of Disjoint Union of Fan Graphs
Abstract
Let G = (V,E) is a connected graph and c is a k-coloring of G. The color class of G is the set of colored vertexs i, denoted by Ci for 1 <= i <= k. Let phi is a ordered partition from V (G) to independent color classes that is C1;C2; ...;Ck, with vertexs of Ci given color by i, 1 <= i <= k. Distance of a vertex v in V to Ci denoted by d(v,Ci) is min {d(v, x)|x in Ci}. The color codes of a vertex v in V is the ordered k-vector c(Phi|v) = (d(v,C1), d(v,C2), ..., d(v,Ck)) where d(v,Ci) = min {d(v, x | x in Ci)} for 1 <= i <= k. If distinct vertices have distinct color codes, then c is called a locating-coloring of G. The locating-chromatic number
XL(G) is the minimum number of colors in a locating-coloring of G. Let H is a disconnected graph and c is a k-coloring of H then induced partition of Phi from V(H). The coloring c is locating k-coloring of H if all vertices of H have distinct color codes. The locating-chromatic number of H, denoted by XL'(H), is the smallest k such that H admits a locating-coloring with k colors. In this paper, we study the locating-chromatic number of disjoint union of fan graphs.
Full Text:
PDFReferences
Asmiati and E.T. Baskoro, 2012. Characterizing All Graphs Containing Cycles
With Locating-Chromatic Number 3. AIP Conf. Proc. 321-357.
Asmiati, H. Assiyatun, E. T. Baskoro, D. Suprijanto, R. Simanjuntak and S.
Uttunggadewa. 2012. The locating-chromatic number of frecracker graphs. Far
East Journal of Mathematical Sciences.
(1):11-23
Azhari, M. 2020. Bilangan Kromatik Lokasi Graf Tak Terhubung dengan Graf
Lintasan dan Graf Bintang Ganda sebagai Komponen-komponennya. Skripsi
S-1 Universitas Andalas,Indonesia, tidak diterbitkan.
Behtoei, A. dan Anbarloei, M. 2014. The Locating Chromatic Number of The
Join Graphs. Bulletin of the Iranian Mathematical Society. 40(6):1491-1504.
Bondy, J.A.,U.S.R. Murty. 1976. Graph Theory with Application.
Elsevier Science Publishing, New York.
Chartrand, G., M.A. Henning, P.J. Slater, dan P. Zhang. 2002.
The locating-chromatic number of a graph. Bull.Inst. Combin. Appl. 36:89-
Welyyanti, D. 2018. Beberapa Syarat Cukup untuk Bilangan Kromatik Lokasi
Hingga pada Graf Tak Terhubung. Eksakta. 19(1):76-82.
Welyyanti, D., Baskoro, E.T, Simanjuntak, R., Utunggadewa, S. 2014. The
locating-Chromatic Number of Disconnected Graph. For East Journal of Math-
ematical Science. 94(2):169-182.
Welyyanti, D., Lestari, R., Putri, S.R. 2019. The locating-Chromatic Number
of Disconnected Graph with Path and Cycle Graph as its Components. IOP
Conference Series. 1317:1-7.
DOI: https://doi.org/10.25077/jmua.11.3.159-170.2022
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jurnal Matematika UNAND
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.